105 lines
2.7 KiB
Markdown
105 lines
2.7 KiB
Markdown
# IGEV-Stereo & IGEV-MVS
|
|
This repository contains the source code for our paper:
|
|
|
|
Iterative Geometry Encoding Volume for Stereo Matching<br/>
|
|
CVPR 2023 <br/>
|
|
Gangwei Xu, Xianqi Wang, Xiaohuan Ding, Xin Yang<br/>
|
|
|
|
<img src="IGEV-Stereo/IGEV-Stereo.png">
|
|
|
|
## Environment
|
|
* NVIDIA RTX 3090
|
|
* Python 3.8
|
|
* Pytorch 1.12
|
|
|
|
### Create a virtual environment and activate it.
|
|
|
|
```
|
|
conda create -n IGEV_Stereo python=3.8
|
|
conda activate IGEV_Stereo
|
|
```
|
|
### Dependencies
|
|
|
|
```
|
|
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
|
|
pip install opencv-python
|
|
pip install scikit-image
|
|
pip install tensorboard
|
|
pip install matplotlib
|
|
pip install tqdm
|
|
pip install timm==0.5.4
|
|
```
|
|
|
|
## Demos
|
|
Pretrained models can be downloaded from [google drive](https://drive.google.com/drive/folders/1SsMHRyN7808jDViMN1sKz1Nx-71JxUuz?usp=share_link)
|
|
|
|
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run
|
|
```
|
|
python demo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth
|
|
```
|
|
|
|
|
|
## Required Data
|
|
To evaluate/train IGEV-Stereo, you will need to download the required datasets.
|
|
* [Scene Flow](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
|
|
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo)
|
|
* [Middlebury](https://vision.middlebury.edu/stereo/data/)
|
|
* [ETH3D](https://www.eth3d.net/datasets#low-res-two-view-test-data)
|
|
|
|
By default `stereo_datasets.py` will search for the datasets in these locations.
|
|
|
|
```
|
|
├── /data
|
|
├── sceneflow
|
|
├── frames_finalpass
|
|
├── disparity
|
|
├── KITTI
|
|
├── KITTI_2012
|
|
├── training
|
|
├── testing
|
|
├── vkitti
|
|
├── KITTI_2015
|
|
├── training
|
|
├── testing
|
|
├── vkitti
|
|
├── Middlebury
|
|
├── trainingH
|
|
├── trainingH_GT
|
|
├── ETH3D
|
|
├── two_view_training
|
|
├── two_view_training_gt
|
|
```
|
|
|
|
|
|
## Evaluation
|
|
|
|
To evaluate a trained model on a test set (e.g. Scene Flow), run
|
|
```Shell
|
|
python evaluate_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset sceneflow
|
|
```
|
|
|
|
## Training
|
|
|
|
To train on Scene Flow, run
|
|
|
|
```Shell
|
|
python train_stereo.py
|
|
```
|
|
|
|
To train on KITTI, run
|
|
```Shell
|
|
python train_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset kitti
|
|
```
|
|
|
|
## Submission
|
|
|
|
For submission to the KITTI benchmark, run
|
|
```Shell
|
|
python save_disp.py
|
|
```
|
|
|
|
# Acknowledgements
|
|
|
|
This project is heavily based on [RAFT-Stereo](https://github.com/princeton-vl/RAFT-Stereo), We thank the original authors for their excellent work.
|
|
|