41 lines
987 B
Markdown
41 lines
987 B
Markdown
# IGEV-Stereo & IGEV-MVS
|
|
This repository contains the source code for our paper:
|
|
|
|
Iterative Geometry Encoding Volume for Stereo Matching<br/>
|
|
CVPR 2023 <br/>
|
|
Gangwei Xu, Xianqi Wang, Xiaohuan Ding, Xin Yang<br/>
|
|
|
|
<img src="IGEV-Stereo/IGEV-Stereo.png">
|
|
|
|
## Environment
|
|
* NVIDIA RTX 3090
|
|
* Python 3.8
|
|
* Pytorch 1.12
|
|
|
|
### Create a virtual environment and activate it.
|
|
|
|
```
|
|
conda create -n IGEV_Stereo python=3.8
|
|
conda activate IGEV_Stereo
|
|
```
|
|
### Dependencies
|
|
|
|
```
|
|
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
|
|
pip install opencv-python
|
|
pip install scikit-image
|
|
pip install tensorboard
|
|
pip install matplotlib
|
|
pip install tqdm
|
|
pip install timm==0.5.4
|
|
```
|
|
|
|
## Demos
|
|
Pretrained models can be downloaded from [google drive](https://drive.google.com/drive/folders/1SsMHRyN7808jDViMN1sKz1Nx-71JxUuz?usp=share_link)
|
|
|
|
You can demo a trained model on Middlebury training pairs
|
|
```
|
|
python demo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth
|
|
```
|
|
|