GwcNet/utils/visualization.py
2019-04-14 21:26:51 +08:00

59 lines
2.1 KiB
Python

from __future__ import print_function
import torch
import torch.nn as nn
import torch.utils.data
from torch.autograd import Variable, Function
import torch.nn.functional as F
import math
import numpy as np
def gen_error_colormap():
cols = np.array(
[[0 / 3.0, 0.1875 / 3.0, 49, 54, 149],
[0.1875 / 3.0, 0.375 / 3.0, 69, 117, 180],
[0.375 / 3.0, 0.75 / 3.0, 116, 173, 209],
[0.75 / 3.0, 1.5 / 3.0, 171, 217, 233],
[1.5 / 3.0, 3 / 3.0, 224, 243, 248],
[3 / 3.0, 6 / 3.0, 254, 224, 144],
[6 / 3.0, 12 / 3.0, 253, 174, 97],
[12 / 3.0, 24 / 3.0, 244, 109, 67],
[24 / 3.0, 48 / 3.0, 215, 48, 39],
[48 / 3.0, np.inf, 165, 0, 38]], dtype=np.float32)
cols[:, 2: 5] /= 255.
return cols
error_colormap = gen_error_colormap()
class disp_error_image_func(Function):
def forward(self, D_est_tensor, D_gt_tensor, abs_thres=3., rel_thres=0.05, dilate_radius=1):
D_gt_np = D_gt_tensor.detach().cpu().numpy()
D_est_np = D_est_tensor.detach().cpu().numpy()
B, H, W = D_gt_np.shape
# valid mask
mask = D_gt_np > 0
# error in percentage. When error <= 1, the pixel is valid since <= 3px & 5%
error = np.abs(D_gt_np - D_est_np)
error[np.logical_not(mask)] = 0
error[mask] = np.minimum(error[mask] / abs_thres, (error[mask] / D_gt_np[mask]) / rel_thres)
# get colormap
cols = error_colormap
# create error image
error_image = np.zeros([B, H, W, 3], dtype=np.float32)
for i in range(cols.shape[0]):
error_image[np.logical_and(error >= cols[i][0], error < cols[i][1])] = cols[i, 2:]
# TODO: imdilate
# error_image = cv2.imdilate(D_err, strel('disk', dilate_radius));
error_image[np.logical_not(mask)] = 0.
# show color tag in the top-left cornor of the image
for i in range(cols.shape[0]):
distance = 20
error_image[:, :10, i * distance:(i + 1) * distance, :] = cols[i, 2:]
return torch.from_numpy(np.ascontiguousarray(error_image.transpose([0, 3, 1, 2])))
def backward(self, grad_output):
return None