remove unused packages

This commit is contained in:
Xiaoyang Guo 2019-04-14 21:26:51 +08:00
parent eead4d9e8a
commit 1167dcb794
5 changed files with 1 additions and 17 deletions

View File

@ -15,18 +15,15 @@ import time
from tensorboardX import SummaryWriter
from datasets import __datasets__
from models import __models__
from models import *
from utils import *
from torch.utils.data import DataLoader
import skimage
import gc
import datetime
import cv2
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Group-wise Correlation Stereo Network (GwcNet)')
parser.add_argument('--model', default='gwcnet-g', help='select a model structure', choices=__models__.keys())
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--dataset', required=True, help='dataset name', choices=__datasets__.keys())
parser.add_argument('--datapath', required=True, help='data path')
@ -36,7 +33,6 @@ parser.add_argument('--testlist', required=True, help='testing list')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--batch_size', type=int, default=16, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=8, help='testing batch size')
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--epochs', type=int, required=True, help='number of epochs to train')
parser.add_argument('--lrepochs', type=str, required=True, help='the epochs to decay lr: the downscale rate')

View File

@ -4,7 +4,6 @@ import torch.nn as nn
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import math
from models.submodule import *

View File

@ -5,7 +5,6 @@ import torch.utils.data
from torch.autograd import Variable
from torch.autograd.function import Function
import torch.nn.functional as F
import math
import numpy as np

View File

@ -7,13 +7,7 @@ from torch.autograd import Variable
import torchvision.utils as vutils
import torch.nn.functional as F
import numpy as np
import time
from datasets import *
from models import *
import copy
import yaml
import sys
import argparse
def make_iterative_func(func):

View File

@ -6,10 +6,6 @@ from torch.autograd import Variable, Function
import torch.nn.functional as F
import math
import numpy as np
import cv2
# disable multi-thread
cv2.setNumThreads(0)
def gen_error_colormap():