187 lines
5.8 KiB
Python
187 lines
5.8 KiB
Python
import numpy as np
|
|
from PIL import Image
|
|
from os.path import *
|
|
import re
|
|
import json
|
|
import imageio
|
|
import cv2
|
|
cv2.setNumThreads(0)
|
|
cv2.ocl.setUseOpenCL(False)
|
|
|
|
TAG_CHAR = np.array([202021.25], np.float32)
|
|
|
|
def readFlow(fn):
|
|
""" Read .flo file in Middlebury format"""
|
|
# Code adapted from:
|
|
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
|
|
|
|
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
|
|
# print 'fn = %s'%(fn)
|
|
with open(fn, 'rb') as f:
|
|
magic = np.fromfile(f, np.float32, count=1)
|
|
if 202021.25 != magic:
|
|
print('Magic number incorrect. Invalid .flo file')
|
|
return None
|
|
else:
|
|
w = np.fromfile(f, np.int32, count=1)
|
|
h = np.fromfile(f, np.int32, count=1)
|
|
# print 'Reading %d x %d flo file\n' % (w, h)
|
|
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
|
|
# Reshape data into 3D array (columns, rows, bands)
|
|
# The reshape here is for visualization, the original code is (w,h,2)
|
|
return np.resize(data, (int(h), int(w), 2))
|
|
|
|
def readPFM(file):
|
|
file = open(file, 'rb')
|
|
|
|
color = None
|
|
width = None
|
|
height = None
|
|
scale = None
|
|
endian = None
|
|
|
|
header = file.readline().rstrip()
|
|
if header == b'PF':
|
|
color = True
|
|
elif header == b'Pf':
|
|
color = False
|
|
else:
|
|
raise Exception('Not a PFM file.')
|
|
|
|
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
|
if dim_match:
|
|
width, height = map(int, dim_match.groups())
|
|
else:
|
|
raise Exception('Malformed PFM header.')
|
|
|
|
scale = float(file.readline().rstrip())
|
|
if scale < 0: # little-endian
|
|
endian = '<'
|
|
scale = -scale
|
|
else:
|
|
endian = '>' # big-endian
|
|
|
|
data = np.fromfile(file, endian + 'f')
|
|
shape = (height, width, 3) if color else (height, width)
|
|
|
|
data = np.reshape(data, shape)
|
|
data = np.flipud(data)
|
|
return data
|
|
|
|
def writePFM(file, array):
|
|
import os
|
|
assert type(file) is str and type(array) is np.ndarray and \
|
|
os.path.splitext(file)[1] == ".pfm"
|
|
with open(file, 'wb') as f:
|
|
H, W = array.shape
|
|
headers = ["Pf\n", f"{W} {H}\n", "-1\n"]
|
|
for header in headers:
|
|
f.write(str.encode(header))
|
|
array = np.flip(array, axis=0).astype(np.float32)
|
|
f.write(array.tobytes())
|
|
|
|
|
|
|
|
def writeFlow(filename,uv,v=None):
|
|
""" Write optical flow to file.
|
|
|
|
If v is None, uv is assumed to contain both u and v channels,
|
|
stacked in depth.
|
|
Original code by Deqing Sun, adapted from Daniel Scharstein.
|
|
"""
|
|
nBands = 2
|
|
|
|
if v is None:
|
|
assert(uv.ndim == 3)
|
|
assert(uv.shape[2] == 2)
|
|
u = uv[:,:,0]
|
|
v = uv[:,:,1]
|
|
else:
|
|
u = uv
|
|
|
|
assert(u.shape == v.shape)
|
|
height,width = u.shape
|
|
f = open(filename,'wb')
|
|
# write the header
|
|
f.write(TAG_CHAR)
|
|
np.array(width).astype(np.int32).tofile(f)
|
|
np.array(height).astype(np.int32).tofile(f)
|
|
# arrange into matrix form
|
|
tmp = np.zeros((height, width*nBands))
|
|
tmp[:,np.arange(width)*2] = u
|
|
tmp[:,np.arange(width)*2 + 1] = v
|
|
tmp.astype(np.float32).tofile(f)
|
|
f.close()
|
|
|
|
|
|
def readFlowKITTI(filename):
|
|
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
|
|
flow = flow[:,:,::-1].astype(np.float32)
|
|
flow, valid = flow[:, :, :2], flow[:, :, 2]
|
|
flow = (flow - 2**15) / 64.0
|
|
return flow, valid
|
|
|
|
def readDispKITTI(filename):
|
|
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
|
|
valid = disp > 0.0
|
|
return disp, valid
|
|
|
|
# Method taken from /n/fs/raft-depth/RAFT-Stereo/datasets/SintelStereo/sdk/python/sintel_io.py
|
|
def readDispSintelStereo(file_name):
|
|
a = np.array(Image.open(file_name))
|
|
d_r, d_g, d_b = np.split(a, axis=2, indices_or_sections=3)
|
|
disp = (d_r * 4 + d_g / (2**6) + d_b / (2**14))[..., 0]
|
|
mask = np.array(Image.open(file_name.replace('disparities', 'occlusions')))
|
|
valid = ((mask == 0) & (disp > 0))
|
|
return disp, valid
|
|
|
|
# Method taken from https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
|
|
def readDispFallingThings(file_name):
|
|
a = np.array(Image.open(file_name))
|
|
with open('/'.join(file_name.split('/')[:-1] + ['_camera_settings.json']), 'r') as f:
|
|
intrinsics = json.load(f)
|
|
fx = intrinsics['camera_settings'][0]['intrinsic_settings']['fx']
|
|
disp = (fx * 6.0 * 100) / a.astype(np.float32)
|
|
valid = disp > 0
|
|
return disp, valid
|
|
|
|
# Method taken from https://github.com/castacks/tartanair_tools/blob/master/data_type.md
|
|
def readDispTartanAir(file_name):
|
|
depth = np.load(file_name)
|
|
disp = 80.0 / depth
|
|
valid = disp > 0
|
|
return disp, valid
|
|
|
|
|
|
def readDispMiddlebury(file_name):
|
|
assert basename(file_name) == 'disp0GT.pfm'
|
|
disp = readPFM(file_name).astype(np.float32)
|
|
assert len(disp.shape) == 2
|
|
nocc_pix = file_name.replace('disp0GT.pfm', 'mask0nocc.png')
|
|
assert exists(nocc_pix)
|
|
nocc_pix = imageio.imread(nocc_pix) == 255
|
|
assert np.any(nocc_pix)
|
|
return disp, nocc_pix
|
|
|
|
def writeFlowKITTI(filename, uv):
|
|
uv = 64.0 * uv + 2**15
|
|
valid = np.ones([uv.shape[0], uv.shape[1], 1])
|
|
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
|
|
cv2.imwrite(filename, uv[..., ::-1])
|
|
|
|
|
|
def read_gen(file_name, pil=False):
|
|
ext = splitext(file_name)[-1]
|
|
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
|
return Image.open(file_name)
|
|
elif ext == '.bin' or ext == '.raw':
|
|
return np.load(file_name)
|
|
elif ext == '.flo':
|
|
return readFlow(file_name).astype(np.float32)
|
|
elif ext == '.pfm':
|
|
flow = readPFM(file_name).astype(np.float32)
|
|
if len(flow.shape) == 2:
|
|
return flow
|
|
else:
|
|
return flow[:, :, :-1]
|
|
return [] |