IGEV/IGEV-Stereo/core/extractor.py

366 lines
13 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from core.submodule import *
import timm
class ResidualBlock(nn.Module):
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
num_groups = planes // 8
if norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
elif norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(planes)
self.norm2 = nn.BatchNorm2d(planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.BatchNorm2d(planes)
elif norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(planes)
self.norm2 = nn.InstanceNorm2d(planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.InstanceNorm2d(planes)
elif norm_fn == 'none':
self.norm1 = nn.Sequential()
self.norm2 = nn.Sequential()
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.Sequential()
if stride == 1 and in_planes == planes:
self.downsample = None
else:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
def forward(self, x):
y = x
y = self.conv1(y)
y = self.norm1(y)
y = self.relu(y)
y = self.conv2(y)
y = self.norm2(y)
y = self.relu(y)
if self.downsample is not None:
x = self.downsample(x)
return self.relu(x+y)
class BottleneckBlock(nn.Module):
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
super(BottleneckBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
num_groups = planes // 8
if norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
if not stride == 1:
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
elif norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(planes//4)
self.norm2 = nn.BatchNorm2d(planes//4)
self.norm3 = nn.BatchNorm2d(planes)
if not stride == 1:
self.norm4 = nn.BatchNorm2d(planes)
elif norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(planes//4)
self.norm2 = nn.InstanceNorm2d(planes//4)
self.norm3 = nn.InstanceNorm2d(planes)
if not stride == 1:
self.norm4 = nn.InstanceNorm2d(planes)
elif norm_fn == 'none':
self.norm1 = nn.Sequential()
self.norm2 = nn.Sequential()
self.norm3 = nn.Sequential()
if not stride == 1:
self.norm4 = nn.Sequential()
if stride == 1:
self.downsample = None
else:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
def forward(self, x):
y = x
y = self.relu(self.norm1(self.conv1(y)))
y = self.relu(self.norm2(self.conv2(y)))
y = self.relu(self.norm3(self.conv3(y)))
if self.downsample is not None:
x = self.downsample(x)
return self.relu(x+y)
class BasicEncoder(nn.Module):
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0, downsample=3):
super(BasicEncoder, self).__init__()
self.norm_fn = norm_fn
self.downsample = downsample
if self.norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
elif self.norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(64)
elif self.norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(64)
elif self.norm_fn == 'none':
self.norm1 = nn.Sequential()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3)
self.relu1 = nn.ReLU(inplace=True)
self.in_planes = 64
self.layer1 = self._make_layer(64, stride=1)
self.layer2 = self._make_layer(96, stride=1 + (downsample > 1))
self.layer3 = self._make_layer(128, stride=1 + (downsample > 0))
# output convolution
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
self.dropout = None
if dropout > 0:
self.dropout = nn.Dropout2d(p=dropout)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
if m.weight is not None:
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _make_layer(self, dim, stride=1):
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
layers = (layer1, layer2)
self.in_planes = dim
return nn.Sequential(*layers)
def forward(self, x, dual_inp=False):
# if input is list, combine batch dimension
is_list = isinstance(x, tuple) or isinstance(x, list)
if is_list:
batch_dim = x[0].shape[0]
x = torch.cat(x, dim=0)
x = self.conv1(x)
x = self.norm1(x)
x = self.relu1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.conv2(x)
if self.training and self.dropout is not None:
x = self.dropout(x)
if is_list:
x = x.split(split_size=batch_dim, dim=0)
return x
class MultiBasicEncoder(nn.Module):
def __init__(self, output_dim=[128], norm_fn='batch', dropout=0.0, downsample=3):
super(MultiBasicEncoder, self).__init__()
self.norm_fn = norm_fn
self.downsample = downsample
# self.norm_111 = nn.BatchNorm2d(128, affine=False, track_running_stats=False)
# self.norm_222 = nn.BatchNorm2d(128, affine=False, track_running_stats=False)
if self.norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
elif self.norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(64)
elif self.norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(64)
elif self.norm_fn == 'none':
self.norm1 = nn.Sequential()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3)
self.relu1 = nn.ReLU(inplace=True)
self.in_planes = 64
self.layer1 = self._make_layer(64, stride=1)
self.layer2 = self._make_layer(96, stride=1 + (downsample > 1))
self.layer3 = self._make_layer(128, stride=1 + (downsample > 0))
self.layer4 = self._make_layer(128, stride=2)
self.layer5 = self._make_layer(128, stride=2)
output_list = []
for dim in output_dim:
conv_out = nn.Sequential(
ResidualBlock(128, 128, self.norm_fn, stride=1),
nn.Conv2d(128, dim[2], 3, padding=1))
output_list.append(conv_out)
self.outputs04 = nn.ModuleList(output_list)
output_list = []
for dim in output_dim:
conv_out = nn.Sequential(
ResidualBlock(128, 128, self.norm_fn, stride=1),
nn.Conv2d(128, dim[1], 3, padding=1))
output_list.append(conv_out)
self.outputs08 = nn.ModuleList(output_list)
output_list = []
for dim in output_dim:
conv_out = nn.Conv2d(128, dim[0], 3, padding=1)
output_list.append(conv_out)
self.outputs16 = nn.ModuleList(output_list)
if dropout > 0:
self.dropout = nn.Dropout2d(p=dropout)
else:
self.dropout = None
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
if m.weight is not None:
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _make_layer(self, dim, stride=1):
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
layers = (layer1, layer2)
self.in_planes = dim
return nn.Sequential(*layers)
def forward(self, x, dual_inp=False, num_layers=3):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if dual_inp:
v = x
x = x[:(x.shape[0]//2)]
outputs04 = [f(x) for f in self.outputs04]
if num_layers == 1:
return (outputs04, v) if dual_inp else (outputs04,)
y = self.layer4(x)
outputs08 = [f(y) for f in self.outputs08]
if num_layers == 2:
return (outputs04, outputs08, v) if dual_inp else (outputs04, outputs08)
z = self.layer5(y)
outputs16 = [f(z) for f in self.outputs16]
return (outputs04, outputs08, outputs16, v) if dual_inp else (outputs04, outputs08, outputs16)
class SubModule(nn.Module):
def __init__(self):
super(SubModule, self).__init__()
def weight_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class Feature(SubModule):
def __init__(self, freeze):
super(Feature, self).__init__()
pretrained = True
self.model = timm.create_model('mobilenetv2_100', pretrained=pretrained, features_only=True)
if freeze:
for p in self.model.parameters():
p.requires_grad = False
layers = [1,2,3,5,6]
chans = [16, 24, 32, 96, 160]
self.conv_stem = self.model.conv_stem
self.bn1 = self.model.bn1
self.act1 = self.model.act1
self.block0 = torch.nn.Sequential(*self.model.blocks[0:layers[0]])
self.block1 = torch.nn.Sequential(*self.model.blocks[layers[0]:layers[1]])
self.block2 = torch.nn.Sequential(*self.model.blocks[layers[1]:layers[2]])
self.block3 = torch.nn.Sequential(*self.model.blocks[layers[2]:layers[3]])
self.block4 = torch.nn.Sequential(*self.model.blocks[layers[3]:layers[4]])
self.deconv32_16 = Conv2x_IN(chans[4], chans[3], deconv=True, concat=True)
self.deconv16_8 = Conv2x_IN(chans[3]*2, chans[2], deconv=True, concat=True)
self.deconv8_4 = Conv2x_IN(chans[2]*2, chans[1], deconv=True, concat=True)
self.conv4 = BasicConv_IN(chans[1]*2, chans[1]*2, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.act1(self.bn1(self.conv_stem(x)))
x2 = self.block0(x)
x4 = self.block1(x2)
x8 = self.block2(x4)
x16 = self.block3(x8)
x32 = self.block4(x16)
x16 = self.deconv32_16(x32, x16)
x8 = self.deconv16_8(x16, x8)
x4 = self.deconv8_4(x8, x4)
x4 = self.conv4(x4)
return [x4, x8, x16, x32]