import torch import torch.nn as nn import torch.nn.functional as F from opt_einsum import contract class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256, output_dim=2): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, output_dim, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class DispHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256, output_dim=1): super(DispHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, output_dim, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class ConvGRU(nn.Module): def __init__(self, hidden_dim, input_dim, kernel_size=3): super(ConvGRU, self).__init__() self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2) def forward(self, h, cz, cr, cq, *x_list): x = torch.cat(x_list, dim=1) hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx) + cz) r = torch.sigmoid(self.convr(hx) + cr) q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)) + cq) h = (1-z) * h + z * q return h class SepConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(SepConvGRU, self).__init__() self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) def forward(self, h, *x): # horizontal x = torch.cat(x, dim=1) hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz1(hx)) r = torch.sigmoid(self.convr1(hx)) q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q # vertical hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz2(hx)) r = torch.sigmoid(self.convr2(hx)) q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class BasicMotionEncoder(nn.Module): def __init__(self, args): super(BasicMotionEncoder, self).__init__() self.args = args cor_planes = args.corr_levels * (2*args.corr_radius + 1) * (8+1) self.convc1 = nn.Conv2d(cor_planes, 64, 1, padding=0) self.convc2 = nn.Conv2d(64, 64, 3, padding=1) self.convd1 = nn.Conv2d(1, 64, 7, padding=3) self.convd2 = nn.Conv2d(64, 64, 3, padding=1) self.conv = nn.Conv2d(64+64, 128-1, 3, padding=1) def forward(self, disp, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) disp_ = F.relu(self.convd1(disp)) disp_ = F.relu(self.convd2(disp_)) cor_disp = torch.cat([cor, disp_], dim=1) out = F.relu(self.conv(cor_disp)) return torch.cat([out, disp], dim=1) def pool2x(x): return F.avg_pool2d(x, 3, stride=2, padding=1) def pool4x(x): return F.avg_pool2d(x, 5, stride=4, padding=1) def interp(x, dest): interp_args = {'mode': 'bilinear', 'align_corners': True} return F.interpolate(x, dest.shape[2:], **interp_args) class BasicMultiUpdateBlock(nn.Module): def __init__(self, args, hidden_dims=[]): super().__init__() self.args = args self.encoder = BasicMotionEncoder(args) encoder_output_dim = 128 self.gru04 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (args.n_gru_layers > 1)) self.gru08 = ConvGRU(hidden_dims[1], hidden_dims[0] * (args.n_gru_layers == 3) + hidden_dims[2]) self.gru16 = ConvGRU(hidden_dims[0], hidden_dims[1]) self.disp_head = DispHead(hidden_dims[2], hidden_dim=256, output_dim=1) factor = 2**self.args.n_downsample self.mask_feat_4 = nn.Sequential( nn.Conv2d(hidden_dims[2], 32, 3, padding=1), nn.ReLU(inplace=True)) def forward(self, net, inp, corr=None, disp=None, iter04=True, iter08=True, iter16=True, update=True): if iter16: net[2] = self.gru16(net[2], *(inp[2]), pool2x(net[1])) if iter08: if self.args.n_gru_layers > 2: net[1] = self.gru08(net[1], *(inp[1]), pool2x(net[0]), interp(net[2], net[1])) else: net[1] = self.gru08(net[1], *(inp[1]), pool2x(net[0])) if iter04: motion_features = self.encoder(disp, corr) if self.args.n_gru_layers > 1: net[0] = self.gru04(net[0], *(inp[0]), motion_features, interp(net[1], net[0])) else: net[0] = self.gru04(net[0], *(inp[0]), motion_features) if not update: return net delta_disp = self.disp_head(net[0]) mask_feat_4 = self.mask_feat_4(net[0]) return net, mask_feat_4, delta_disp