import argparse import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import DataLoader import torch.nn.functional as F import numpy as np import random import time from torch.utils.tensorboard import SummaryWriter from datasets import find_dataset_def from core.igev_mvs import IGEVMVS from core.submodule import depth_normalization, depth_unnormalization from utils import * import sys import datetime from tqdm import tqdm cudnn.benchmark = True parser = argparse.ArgumentParser(description='IterMVStereo for high-resolution multi-view stereo') parser.add_argument('--mode', default='train', help='train or val', choices=['train', 'val']) parser.add_argument('--dataset', default='dtu_yao', help='select dataset') parser.add_argument('--trainpath', default='/data/DTU_data/dtu_train/', help='train datapath') parser.add_argument('--valpath', help='validation datapath') parser.add_argument('--trainlist', default='./lists/dtu/train.txt', help='train list') parser.add_argument('--vallist', default='./lists/dtu/val.txt', help='validation list') parser.add_argument('--maxdisp', default=256) parser.add_argument('--epochs', type=int, default=32, help='number of epochs to train') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate') parser.add_argument('--wd', type=float, default=.00001, help='weight decay') parser.add_argument('--batch_size', type=int, default=6, help='train batch size') parser.add_argument('--loadckpt', default=None, help='load a specific checkpoint') parser.add_argument('--logdir', default='./checkpoints/', help='the directory to save checkpoints/logs') parser.add_argument('--resume', action='store_true', help='continue to train the model') parser.add_argument('--regress', action='store_true', help='train the regression and confidence') parser.add_argument('--small_image', action='store_true', help='train with small input as 640x512, otherwise train with 1280x1024') parser.add_argument('--summary_freq', type=int, default=20, help='print and summary frequency') parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed') parser.add_argument('--iteration', type=int, default=22, help='num of iteration of GRU') try: from torch.cuda.amp import GradScaler except: # dummy GradScaler for PyTorch < 1.6 class GradScaler: def __init__(self): pass def scale(self, loss): return loss def unscale_(self, optimizer): pass def step(self, optimizer): optimizer.step() def update(self): pass def sequence_loss(disp_preds, disp_init_pred, depth_gt, mask, depth_min, depth_max, loss_gamma=0.9): """ Loss function defined over sequence of depth predictions """ cross_entropy = nn.BCEWithLogitsLoss() n_predictions = len(disp_preds) assert n_predictions >= 1 loss = 0.0 mask = mask > 0.5 batch, _, height, width = depth_gt.size() inverse_depth_min = (1.0 / depth_min).view(batch, 1, 1, 1) inverse_depth_max = (1.0 / depth_max).view(batch, 1, 1, 1) normalized_disp_gt = depth_normalization(depth_gt, inverse_depth_min, inverse_depth_max) loss += 1.0 * F.l1_loss(disp_init_pred[mask], normalized_disp_gt[mask], reduction='mean') if args.iteration != 0: for i in range(n_predictions): adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1)) i_weight = adjusted_loss_gamma**(n_predictions - i - 1) loss += i_weight * F.l1_loss(disp_preds[i][mask], normalized_disp_gt[mask], reduction='mean') return loss # parse arguments and check args = parser.parse_args() if args.resume: # store_true means set the variable as "True" assert args.mode == "train" assert args.loadckpt is None if args.valpath is None: args.valpath = args.trainpath torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) if args.mode == "train": if not os.path.isdir(args.logdir): os.mkdir(args.logdir) current_time_str = str(datetime.datetime.now().strftime('%Y%m%d_%H%M%S')) print("current time", current_time_str) print("creating new summary file") logger = SummaryWriter(args.logdir) print("argv:", sys.argv[1:]) print_args(args) # dataset, dataloader MVSDataset = find_dataset_def(args.dataset) train_dataset = MVSDataset(args.trainpath, args.trainlist, "train", 5, robust_train=True) test_dataset = MVSDataset(args.valpath, args.vallist, "val", 5, robust_train=False) TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=4, drop_last=True) TestImgLoader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, drop_last=False) # model, optimizer model = IGEVMVS(args) if args.mode in ["train", "val"]: model = nn.DataParallel(model) model.cuda() model_loss = sequence_loss optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.wd, eps=1e-8) # load parameters start_epoch = 0 if (args.mode == "train" and args.resume) or (args.mode == "val" and not args.loadckpt): saved_models = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")] saved_models = sorted(saved_models, key=lambda x: int(x.split('_')[-1].split('.')[0])) # use the latest checkpoint file loadckpt = os.path.join(args.logdir, saved_models[-1]) print("resuming", loadckpt) state_dict = torch.load(loadckpt) model.load_state_dict(state_dict['model'], strict=False) optimizer.load_state_dict(state_dict['optimizer']) start_epoch = state_dict['epoch'] + 1 elif args.loadckpt: # load checkpoint file specified by args.loadckpt print("loading model {}".format(args.loadckpt)) state_dict = torch.load(args.loadckpt) model.load_state_dict(state_dict['model'], strict=False) print("start at epoch {}".format(start_epoch)) print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()]))) # main function def train(args): total_steps = len(TrainImgLoader) * args.epochs + 100 lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, total_steps, pct_start=0.01, cycle_momentum=False, anneal_strategy='linear') for epoch_idx in range(start_epoch, args.epochs): print('Epoch {}:'.format(epoch_idx)) global_step = len(TrainImgLoader) * epoch_idx # training tbar = tqdm(TrainImgLoader) for batch_idx, sample in enumerate(tbar): start_time = time.time() global_step = len(TrainImgLoader) * epoch_idx + batch_idx do_summary = global_step % args.summary_freq == 0 scaler = GradScaler(enabled=True) loss, scalar_outputs = train_sample(args, sample, detailed_summary=do_summary, scaler=scaler) if do_summary: save_scalars(logger, 'train', scalar_outputs, global_step) del scalar_outputs tbar.set_description( 'Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs, batch_idx, len(TrainImgLoader), loss, time.time() - start_time)) lr_scheduler.step() # checkpoint if (epoch_idx + 1) % args.save_freq == 0: torch.save({ 'model': model.state_dict()}, "{}/model_{:0>6}.ckpt".format(args.logdir, epoch_idx)) torch.cuda.empty_cache() # testing avg_test_scalars = DictAverageMeter() tbar = tqdm(TestImgLoader) for batch_idx, sample in enumerate(tbar): start_time = time.time() global_step = len(TestImgLoader) * epoch_idx + batch_idx do_summary = global_step % args.summary_freq == 0 loss, scalar_outputs = test_sample(args, sample, detailed_summary=do_summary) if do_summary: save_scalars(logger, 'test', scalar_outputs, global_step) avg_test_scalars.update(scalar_outputs) del scalar_outputs tbar.set_description('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs, batch_idx, len(TestImgLoader), loss, time.time() - start_time)) save_scalars(logger, 'fulltest', avg_test_scalars.mean(), global_step) print("avg_test_scalars:", avg_test_scalars.mean()) torch.cuda.empty_cache() def test(args): avg_test_scalars = DictAverageMeter() for batch_idx, sample in enumerate(TestImgLoader): start_time = time.time() loss, scalar_outputs = test_sample(args, sample, detailed_summary=True) avg_test_scalars.update(scalar_outputs) del scalar_outputs print('Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(batch_idx, len(TestImgLoader), loss, time.time() - start_time)) if batch_idx % 100 == 0: print("Iter {}/{}, test results = {}".format(batch_idx, len(TestImgLoader), avg_test_scalars.mean())) print("final", avg_test_scalars) def train_sample(args, sample, detailed_summary=False, scaler=None): model.train() optimizer.zero_grad() sample_cuda = tocuda(sample) depth_gt = sample_cuda["depth"] mask = sample_cuda["mask"] depth_gt_0 = depth_gt['level_0'] mask_0 = mask['level_0'] depth_gt_1 = depth_gt['level_2'] mask_1 = mask['level_2'] disp_init, disp_predictions = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_min"], sample_cuda["depth_max"]) loss = model_loss(disp_predictions, disp_init, depth_gt_0, mask_0, sample_cuda["depth_min"], sample_cuda["depth_max"]) scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) scaler.step(optimizer) scaler.update() inverse_depth_min = (1.0 / sample_cuda["depth_min"]).view(args.batch_size, 1, 1, 1) inverse_depth_max = (1.0 / sample_cuda["depth_max"]).view(args.batch_size, 1, 1, 1) depth_init = depth_unnormalization(disp_init, inverse_depth_min, inverse_depth_max) depth_predictions = [] for disp in disp_predictions: depth_predictions.append(depth_unnormalization(disp, inverse_depth_min, inverse_depth_max)) scalar_outputs = {"loss": loss} scalar_outputs["abs_error_initial"] = AbsDepthError_metrics(depth_init, depth_gt_0, mask_0 > 0.5) scalar_outputs["thres1mm_initial"] = Thres_metrics(depth_init, depth_gt_0, mask_0 > 0.5, 1) scalar_outputs["abs_error_final_full"] = AbsDepthError_metrics(depth_predictions[-1], depth_gt_0, mask_0 > 0.5) return tensor2float(loss), tensor2float(scalar_outputs) @make_nograd_func def test_sample(args, sample, detailed_summary=True): model.eval() sample_cuda = tocuda(sample) depth_gt = sample_cuda["depth"] mask = sample_cuda["mask"] depth_gt_0 = depth_gt['level_0'] mask_0 = mask['level_0'] depth_gt_1 = depth_gt['level_2'] mask_1 = mask['level_2'] disp_init, disp_predictions = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_min"], sample_cuda["depth_max"]) loss = model_loss(disp_predictions, disp_init, depth_gt_0, mask_0, sample_cuda["depth_min"], sample_cuda["depth_max"]) inverse_depth_min = (1.0 / sample_cuda["depth_min"]).view(sample_cuda["depth_min"].size()[0], 1, 1, 1) inverse_depth_max = (1.0 / sample_cuda["depth_max"]).view(sample_cuda["depth_max"].size()[0], 1, 1, 1) depth_init = depth_unnormalization(disp_init, inverse_depth_min, inverse_depth_max) depth_predictions = [] for disp in disp_predictions: depth_predictions.append(depth_unnormalization(disp, inverse_depth_min, inverse_depth_max)) scalar_outputs = {"loss": loss} scalar_outputs["abs_error_initial"] = AbsDepthError_metrics(depth_init, depth_gt_0, mask_0 > 0.5) scalar_outputs["thres1mm_initial"] = Thres_metrics(depth_init, depth_gt_0, mask_0 > 0.5, 1) scalar_outputs["abs_error_final_full"] = AbsDepthError_metrics(depth_predictions[-1], depth_gt_0, mask_0 > 0.5) return tensor2float(loss), tensor2float(scalar_outputs) if __name__ == '__main__': if args.mode == "train": train(args) elif args.mode == "val": test(args)