import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class BasicConv(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, bn=True, relu=True, **kwargs): super(BasicConv, self).__init__() self.relu = relu self.use_bn = bn if is_3d: if deconv: self.conv = nn.ConvTranspose3d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv3d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm3d(out_channels) else: if deconv: self.conv = nn.ConvTranspose2d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) if self.relu: x = nn.LeakyReLU()(x)#, inplace=True) return x class Conv2x(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, concat=True, keep_concat=True, bn=True, relu=True, keep_dispc=False): super(Conv2x, self).__init__() self.concat = concat self.is_3d = is_3d if deconv and is_3d: kernel = (4, 4, 4) elif deconv: kernel = 4 else: kernel = 3 if deconv and is_3d and keep_dispc: kernel = (1, 4, 4) stride = (1, 2, 2) padding = (0, 1, 1) self.conv1 = BasicConv(in_channels, out_channels, deconv, is_3d, bn=True, relu=True, kernel_size=kernel, stride=stride, padding=padding) else: self.conv1 = BasicConv(in_channels, out_channels, deconv, is_3d, bn=True, relu=True, kernel_size=kernel, stride=2, padding=1) if self.concat: mul = 2 if keep_concat else 1 self.conv2 = BasicConv(out_channels*2, out_channels*mul, False, is_3d, bn, relu, kernel_size=3, stride=1, padding=1) else: self.conv2 = BasicConv(out_channels, out_channels, False, is_3d, bn, relu, kernel_size=3, stride=1, padding=1) def forward(self, x, rem): x = self.conv1(x) if x.shape != rem.shape: x = F.interpolate( x, size=(rem.shape[-2], rem.shape[-1]), mode='nearest') if self.concat: x = torch.cat((x, rem), 1) else: x = x + rem x = self.conv2(x) return x class BasicConv_IN(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, IN=True, relu=True, **kwargs): super(BasicConv_IN, self).__init__() self.relu = relu self.use_in = IN if is_3d: if deconv: self.conv = nn.ConvTranspose3d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv3d(in_channels, out_channels, bias=False, **kwargs) self.IN = nn.InstanceNorm3d(out_channels) else: if deconv: self.conv = nn.ConvTranspose2d(in_channels, out_channels, bias=False, **kwargs) else: self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.IN = nn.InstanceNorm2d(out_channels) def forward(self, x): x = self.conv(x) if self.use_in: x = self.IN(x) if self.relu: x = nn.LeakyReLU()(x)#, inplace=True) return x class Conv2x_IN(nn.Module): def __init__(self, in_channels, out_channels, deconv=False, is_3d=False, concat=True, keep_concat=True, IN=True, relu=True, keep_dispc=False): super(Conv2x_IN, self).__init__() self.concat = concat self.is_3d = is_3d if deconv and is_3d: kernel = (4, 4, 4) elif deconv: kernel = 4 else: kernel = 3 if deconv and is_3d and keep_dispc: kernel = (1, 4, 4) stride = (1, 2, 2) padding = (0, 1, 1) self.conv1 = BasicConv_IN(in_channels, out_channels, deconv, is_3d, IN=True, relu=True, kernel_size=kernel, stride=stride, padding=padding) else: self.conv1 = BasicConv_IN(in_channels, out_channels, deconv, is_3d, IN=True, relu=True, kernel_size=kernel, stride=2, padding=1) if self.concat: mul = 2 if keep_concat else 1 self.conv2 = BasicConv_IN(out_channels*2, out_channels*mul, False, is_3d, IN, relu, kernel_size=3, stride=1, padding=1) else: self.conv2 = BasicConv_IN(out_channels, out_channels, False, is_3d, IN, relu, kernel_size=3, stride=1, padding=1) def forward(self, x, rem): x = self.conv1(x) if x.shape != rem.shape: x = F.interpolate( x, size=(rem.shape[-2], rem.shape[-1]), mode='nearest') if self.concat: x = torch.cat((x, rem), 1) else: x = x + rem x = self.conv2(x) return x def groupwise_correlation(fea1, fea2, num_groups): B, C, H, W = fea1.shape assert C % num_groups == 0 channels_per_group = C // num_groups cost = (fea1 * fea2).view([B, num_groups, channels_per_group, H, W]).mean(dim=2) assert cost.shape == (B, num_groups, H, W) return cost def build_gwc_volume(refimg_fea, targetimg_fea, maxdisp, num_groups): # batch, groups, max_disp, height, width B, C, H, W = refimg_fea.shape volume = refimg_fea.new_zeros([B, num_groups, maxdisp, H, W]) for i in range(maxdisp): if i > 0: volume[:, :, i, :, i:] = groupwise_correlation(refimg_fea[:, :, :, i:], targetimg_fea[:, :, :, :-i], num_groups) else: volume[:, :, i, :, :] = groupwise_correlation(refimg_fea, targetimg_fea, num_groups) volume = volume.contiguous() return volume def norm_correlation(fea1, fea2): cost = torch.mean(((fea1/(torch.norm(fea1, 2, 1, True)+1e-05)) * (fea2/(torch.norm(fea2, 2, 1, True)+1e-05))), dim=1, keepdim=True) return cost def build_norm_correlation_volume(refimg_fea, targetimg_fea, maxdisp): B, C, H, W = refimg_fea.shape volume = refimg_fea.new_zeros([B, 1, maxdisp, H, W]) for i in range(maxdisp): if i > 0: volume[:, :, i, :, i:] = norm_correlation(refimg_fea[:, :, :, i:], targetimg_fea[:, :, :, :-i]) else: volume[:, :, i, :, :] = norm_correlation(refimg_fea, targetimg_fea) volume = volume.contiguous() return volume def correlation(fea1, fea2): cost = torch.sum((fea1 * fea2), dim=1, keepdim=True) return cost def build_correlation_volume(refimg_fea, targetimg_fea, maxdisp): B, C, H, W = refimg_fea.shape volume = refimg_fea.new_zeros([B, 1, maxdisp, H, W]) for i in range(maxdisp): if i > 0: volume[:, :, i, :, i:] = correlation(refimg_fea[:, :, :, i:], targetimg_fea[:, :, :, :-i]) else: volume[:, :, i, :, :] = correlation(refimg_fea, targetimg_fea) volume = volume.contiguous() return volume def build_concat_volume(refimg_fea, targetimg_fea, maxdisp): B, C, H, W = refimg_fea.shape volume = refimg_fea.new_zeros([B, 2 * C, maxdisp, H, W]) for i in range(maxdisp): if i > 0: volume[:, :C, i, :, :] = refimg_fea[:, :, :, :] volume[:, C:, i, :, i:] = targetimg_fea[:, :, :, :-i] else: volume[:, :C, i, :, :] = refimg_fea volume[:, C:, i, :, :] = targetimg_fea volume = volume.contiguous() return volume def disparity_regression(x, maxdisp): assert len(x.shape) == 4 disp_values = torch.arange(0, maxdisp, dtype=x.dtype, device=x.device) disp_values = disp_values.view(1, maxdisp, 1, 1) return torch.sum(x * disp_values, 1, keepdim=True) class FeatureAtt(nn.Module): def __init__(self, cv_chan, feat_chan): super(FeatureAtt, self).__init__() self.feat_att = nn.Sequential( BasicConv(feat_chan, feat_chan//2, kernel_size=1, stride=1, padding=0), nn.Conv2d(feat_chan//2, cv_chan, 1)) def forward(self, cv, feat): ''' ''' feat_att = self.feat_att(feat).unsqueeze(2) cv = torch.sigmoid(feat_att)*cv return cv def context_upsample(disp_low, up_weights): ### # cv (b,1,h,w) # sp (b,9,4*h,4*w) ### b, c, h, w = disp_low.shape disp_unfold = F.unfold(disp_low.reshape(b,c,h,w),3,1,1).reshape(b,-1,h,w) disp_unfold = F.interpolate(disp_unfold,(h*4,w*4),mode='nearest').reshape(b,9,h*4,w*4) disp = (disp_unfold*up_weights).sum(1) return disp