Compare commits
2 Commits
main
...
original-t
Author | SHA1 | Date | |
---|---|---|---|
|
c83b93e0bf | ||
|
ba4c7e339b |
@ -325,24 +325,21 @@ class SubModule(nn.Module):
|
||||
|
||||
|
||||
class Feature(SubModule):
|
||||
def __init__(self, freeze):
|
||||
def __init__(self):
|
||||
super(Feature, self).__init__()
|
||||
pretrained = True
|
||||
self.model = timm.create_model('mobilenetv2_100', pretrained=pretrained, features_only=True)
|
||||
if freeze:
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = False
|
||||
model = timm.create_model('mobilenetv2_100', pretrained=pretrained, features_only=True)
|
||||
layers = [1,2,3,5,6]
|
||||
chans = [16, 24, 32, 96, 160]
|
||||
self.conv_stem = self.model.conv_stem
|
||||
self.bn1 = self.model.bn1
|
||||
self.act1 = self.model.act1
|
||||
self.conv_stem = model.conv_stem
|
||||
self.bn1 = model.bn1
|
||||
self.act1 = model.act1
|
||||
|
||||
self.block0 = torch.nn.Sequential(*self.model.blocks[0:layers[0]])
|
||||
self.block1 = torch.nn.Sequential(*self.model.blocks[layers[0]:layers[1]])
|
||||
self.block2 = torch.nn.Sequential(*self.model.blocks[layers[1]:layers[2]])
|
||||
self.block3 = torch.nn.Sequential(*self.model.blocks[layers[2]:layers[3]])
|
||||
self.block4 = torch.nn.Sequential(*self.model.blocks[layers[3]:layers[4]])
|
||||
self.block0 = torch.nn.Sequential(*model.blocks[0:layers[0]])
|
||||
self.block1 = torch.nn.Sequential(*model.blocks[layers[0]:layers[1]])
|
||||
self.block2 = torch.nn.Sequential(*model.blocks[layers[1]:layers[2]])
|
||||
self.block3 = torch.nn.Sequential(*model.blocks[layers[2]:layers[3]])
|
||||
self.block4 = torch.nn.Sequential(*model.blocks[layers[3]:layers[4]])
|
||||
|
||||
self.deconv32_16 = Conv2x_IN(chans[4], chans[3], deconv=True, concat=True)
|
||||
self.deconv16_8 = Conv2x_IN(chans[3]*2, chans[2], deconv=True, concat=True)
|
||||
|
@ -60,7 +60,6 @@ class Combined_Geo_Encoding_Volume:
|
||||
|
||||
@staticmethod
|
||||
def corr(fmap1, fmap2):
|
||||
# batch, dim, ht, wd
|
||||
B, D, H, W1 = fmap1.shape
|
||||
_, _, _, W2 = fmap2.shape
|
||||
fmap1 = fmap1.view(B, D, H, W1)
|
||||
|
@ -100,7 +100,7 @@ class IGEVStereo(nn.Module):
|
||||
|
||||
self.context_zqr_convs = nn.ModuleList([nn.Conv2d(context_dims[i], args.hidden_dims[i]*3, 3, padding=3//2) for i in range(self.args.n_gru_layers)])
|
||||
|
||||
self.feature = Feature(args.freeze_backbone_params)
|
||||
self.feature = Feature()
|
||||
|
||||
self.stem_2 = nn.Sequential(
|
||||
BasicConv_IN(3, 32, kernel_size=3, stride=2, padding=1),
|
||||
@ -167,7 +167,6 @@ class IGEVStereo(nn.Module):
|
||||
match_right = self.desc(self.conv(features_right[0]))
|
||||
gwc_volume = build_gwc_volume(match_left, match_right, self.args.max_disp//4, 8)
|
||||
gwc_volume = self.corr_stem(gwc_volume)
|
||||
# 3d unet
|
||||
gwc_volume = self.corr_feature_att(gwc_volume, features_left[0])
|
||||
geo_encoding_volume = self.cost_agg(gwc_volume, features_left)
|
||||
|
||||
@ -183,7 +182,6 @@ class IGEVStereo(nn.Module):
|
||||
spx_pred = self.spx(xspx)
|
||||
spx_pred = F.softmax(spx_pred, 1)
|
||||
|
||||
# Content Network
|
||||
cnet_list = self.cnet(image1, num_layers=self.args.n_gru_layers)
|
||||
net_list = [torch.tanh(x[0]) for x in cnet_list]
|
||||
inp_list = [torch.relu(x[1]) for x in cnet_list]
|
||||
|
@ -293,7 +293,7 @@ class CREStereo(StereoDataset):
|
||||
|
||||
|
||||
class Middlebury(StereoDataset):
|
||||
def __init__(self, aug_params=None, root='/data/Middlebury', split='H'):
|
||||
def __init__(self, aug_params=None, root='/data/Middlebury', split='F'):
|
||||
super(Middlebury, self).__init__(aug_params, sparse=True, reader=frame_utils.readDispMiddlebury)
|
||||
assert os.path.exists(root)
|
||||
assert split in "FHQ"
|
||||
|
@ -157,7 +157,6 @@ def groupwise_correlation(fea1, fea2, num_groups):
|
||||
return cost
|
||||
|
||||
def build_gwc_volume(refimg_fea, targetimg_fea, maxdisp, num_groups):
|
||||
# batch, groups, max_disp, height, width
|
||||
B, C, H, W = refimg_fea.shape
|
||||
volume = refimg_fea.new_zeros([B, num_groups, maxdisp, H, W])
|
||||
for i in range(maxdisp):
|
||||
|
@ -5,7 +5,7 @@ import os
|
||||
import time
|
||||
from glob import glob
|
||||
from skimage import color, io
|
||||
from PIL import Image, ImageEnhance
|
||||
from PIL import Image
|
||||
|
||||
import cv2
|
||||
cv2.setNumThreads(0)
|
||||
@ -198,40 +198,21 @@ class SparseFlowAugmentor:
|
||||
self.v_flip_prob = 0.1
|
||||
|
||||
# photometric augmentation params
|
||||
# self.photo_aug = Compose([ColorJitter(brightness=0.3, contrast=0.3, saturation=saturation_range, hue=0.3/3.14), AdjustGamma(*gamma)])
|
||||
self.photo_aug = Compose([ColorJitter(brightness=0.3, contrast=0.3, saturation=saturation_range, hue=0.3/3.14), AdjustGamma(*gamma)])
|
||||
self.asymmetric_color_aug_prob = 0.2
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
def chromatic_augmentation(self, img):
|
||||
random_brightness = np.random.uniform(0.8, 1.2)
|
||||
random_contrast = np.random.uniform(0.8, 1.2)
|
||||
random_gamma = np.random.uniform(0.8, 1.2)
|
||||
|
||||
img = Image.fromarray(img)
|
||||
|
||||
enhancer = ImageEnhance.Brightness(img)
|
||||
img = enhancer.enhance(random_brightness)
|
||||
enhancer = ImageEnhance.Contrast(img)
|
||||
img = enhancer.enhance(random_contrast)
|
||||
|
||||
gamma_map = [
|
||||
255 * 1.0 * pow(ele / 255.0, random_gamma) for ele in range(256)
|
||||
] * 3
|
||||
img = img.point(gamma_map) # use PIL's point-function to accelerate this part
|
||||
|
||||
img_ = np.array(img)
|
||||
|
||||
return img_
|
||||
|
||||
def color_transform(self, img1, img2):
|
||||
img1 = self.chromatic_augmentation(img1)
|
||||
img2 = self.chromatic_augmentation(img2)
|
||||
image_stack = np.concatenate([img1, img2], axis=0)
|
||||
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
img1, img2 = np.split(image_stack, 2, axis=0)
|
||||
return img1, img2
|
||||
|
||||
def eraser_transform(self, img1, img2):
|
||||
ht, wd = img1.shape[:2]
|
||||
if np.random.rand() < self.eraser_aug_prob:
|
||||
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
||||
for _ in range(1):
|
||||
for _ in range(np.random.randint(1, 3)):
|
||||
x0 = np.random.randint(0, wd)
|
||||
y0 = np.random.randint(0, ht)
|
||||
dx = np.random.randint(50, 100)
|
||||
|
@ -1,112 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append("..")
|
||||
|
||||
import numpy as np
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import random
|
||||
from pathlib import Path
|
||||
from glob import glob
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from core.utils import frame_utils
|
||||
|
||||
|
||||
def unique(lst):
|
||||
return dict(zip(*np.unique(lst, return_counts=True)))
|
||||
|
||||
|
||||
def ensure_path_exists(path):
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
|
||||
|
||||
class CREStereo():
|
||||
def __init__(self, aug_params=None, root='/data/CREStereo'):
|
||||
self.root = root
|
||||
assert os.path.exists(root)
|
||||
|
||||
# disp_list = self.selector('_left.disp.png')
|
||||
# image1_list = self.selector('_left.jpg')
|
||||
# image2_list = self.selector('_right.jpg')
|
||||
|
||||
# assert len(image1_list) == len(image2_list) == len(disp_list) > 0
|
||||
# for img1, img2, disp in zip(image1_list, image2_list, disp_list):
|
||||
# # if random.randint(1, 20000) != 1:
|
||||
# # continue
|
||||
# self.image_list += [[img1, img2]]
|
||||
# self.disparity_list += [disp]
|
||||
|
||||
def get_path_info(self, path):
|
||||
position, filename = os.path.split(path)
|
||||
root, sub_folder = os.path.split(position)
|
||||
return root, sub_folder, filename
|
||||
|
||||
def get_new_file(self, path):
|
||||
root, sub_folder, filename = self.get_path_info(path)
|
||||
return os.path.join(root, 'subset', sub_folder, filename)
|
||||
|
||||
def divide(self, num):
|
||||
ensure_path_exists(os.path.join(self.root, 'subset'))
|
||||
for sub_folder in ['tree', 'shapenet', 'reflective', 'hole']:
|
||||
ensure_path_exists(os.path.join(self.root, 'subset', sub_folder))
|
||||
disp1_list = self.single_folder_selector(sub_folder, '_left.disp.png')
|
||||
disp2_list = self.single_folder_selector(sub_folder, '_right.disp.png')
|
||||
image1_list = self.single_folder_selector(sub_folder, '_left.jpg')
|
||||
image2_list = self.single_folder_selector(sub_folder, '_right.jpg')
|
||||
|
||||
assert len(image1_list) == len(image2_list) == len(disp1_list) == len(disp2_list) > 0
|
||||
lists = []
|
||||
for img1, img2, disp1, disp2 in zip(image1_list, image2_list, disp1_list, disp2_list):
|
||||
lists += [[img1, img2, disp1, disp2]]
|
||||
subset = random.sample(lists, num)
|
||||
|
||||
for s in subset:
|
||||
for element in s:
|
||||
print(element)
|
||||
print(self.get_new_file(element))
|
||||
shutil.copy(element, self.get_new_file(element))
|
||||
|
||||
|
||||
|
||||
def selector(self, suffix):
|
||||
files = list(glob(os.path.join(self.root, f"hole/*{suffix}")))
|
||||
files += list(glob(os.path.join(self.root, f"shapenet/*{suffix}")))
|
||||
files += list(glob(os.path.join(self.root, f"tree/*{suffix}")))
|
||||
files += list(glob(os.path.join(self.root, f"reflective/*{suffix}")))
|
||||
return sorted(files)
|
||||
|
||||
def single_folder_selector(self, sub_folder, suffix):
|
||||
return sorted(list(glob(os.path.join(self.root, f"{sub_folder}/*{suffix}"))))
|
||||
|
||||
def disparity_distribution(self):
|
||||
disp_lists = self.selector('_left.disp.png')
|
||||
disparities = {}
|
||||
for filename in disp_lists:
|
||||
print(filename)
|
||||
disp_gt, _ = frame_utils.readDispCREStereo(filename)
|
||||
[rows, cols] = disp_gt.shape
|
||||
disp_gt = (disp_gt * 32).astype(int)
|
||||
|
||||
cnt = unique(disp_gt)
|
||||
for i in cnt:
|
||||
if i in disparities:
|
||||
disparities[i] += cnt[i]
|
||||
else:
|
||||
disparities[i] = cnt[i]
|
||||
|
||||
x = []
|
||||
y = []
|
||||
for key in disparities.keys():
|
||||
x.append(key / 32)
|
||||
y.append(disparities[key])
|
||||
|
||||
plt.scatter(x, y)
|
||||
plt.show()
|
||||
|
||||
|
||||
c = CREStereo()
|
||||
c.divide(10000)
|
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
for iter in {1..100}
|
||||
do
|
||||
iter=$((iter * 1000))
|
||||
echo "These are the results of ${iter} iterations."
|
||||
python evaluate_stereo.py --dataset middlebury_H --max_disp 384 --freeze_backbone_params --restore_ckpt ~/checkpoints/igev_stereo/${iter}_fix-validation.pth
|
||||
done
|
||||
|
@ -20,7 +20,7 @@ def count_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
@torch.no_grad()
|
||||
def validate_eth3d(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
def validate_eth3d(model, iters=32, mixed_prec=False):
|
||||
""" Peform validation using the ETH3D (train) split """
|
||||
model.eval()
|
||||
aug_params = {}
|
||||
@ -67,7 +67,7 @@ def validate_eth3d(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def validate_kitti(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
def validate_kitti(model, iters=32, mixed_prec=False):
|
||||
""" Peform validation using the KITTI-2015 (train) split """
|
||||
model.eval()
|
||||
aug_params = {}
|
||||
@ -96,7 +96,7 @@ def validate_kitti(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
epe = torch.sum((flow_pr - flow_gt)**2, dim=0).sqrt()
|
||||
|
||||
epe_flattened = epe.flatten()
|
||||
val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < max_disp)
|
||||
val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < 192)
|
||||
# val = valid_gt.flatten() >= 0.5
|
||||
|
||||
out = (epe_flattened > 3.0)
|
||||
@ -120,7 +120,7 @@ def validate_kitti(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def validate_sceneflow(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
def validate_sceneflow(model, iters=32, mixed_prec=False):
|
||||
""" Peform validation using the Scene Flow (TEST) split """
|
||||
model.eval()
|
||||
val_dataset = datasets.SceneFlowDatasets(dstype='frames_finalpass', things_test=True)
|
||||
@ -144,7 +144,7 @@ def validate_sceneflow(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
epe = torch.abs(flow_pr - flow_gt)
|
||||
|
||||
epe = epe.flatten()
|
||||
val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < max_disp)
|
||||
val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < 192)
|
||||
|
||||
if(np.isnan(epe[val].mean().item())):
|
||||
continue
|
||||
@ -169,7 +169,7 @@ def validate_sceneflow(model, iters=32, mixed_prec=False, max_disp=192):
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def validate_middlebury(model, iters=32, split='H', mixed_prec=False, max_disp=192):
|
||||
def validate_middlebury(model, iters=32, split='H', mixed_prec=False):
|
||||
""" Peform validation using the Middlebury-V3 dataset """
|
||||
model.eval()
|
||||
aug_params = {}
|
||||
@ -196,11 +196,11 @@ def validate_middlebury(model, iters=32, split='H', mixed_prec=False, max_disp=1
|
||||
occ_mask = Image.open(imageL_file.replace('im0.png', 'mask0nocc.png')).convert('L')
|
||||
occ_mask = np.ascontiguousarray(occ_mask, dtype=np.float32).flatten()
|
||||
|
||||
val = (valid_gt.reshape(-1) >= 0.5) & (flow_gt[0].reshape(-1) < max_disp) & (occ_mask==255)
|
||||
val = (valid_gt.reshape(-1) >= 0.5) & (flow_gt[0].reshape(-1) < 192) & (occ_mask==255)
|
||||
out = (epe_flattened > 2.0)
|
||||
image_out = out[val].float().mean().item()
|
||||
image_epe = epe_flattened[val].mean().item()
|
||||
logging.info(f"Middlebury Iter {val_id+1} out of {len(val_dataset)}. EPE {round(image_epe,4)} Err2.0 {round(image_out,4)}")
|
||||
logging.info(f"Middlebury Iter {val_id+1} out of {len(val_dataset)}. EPE {round(image_epe,4)} D1 {round(image_out,4)}")
|
||||
epe_list.append(image_epe)
|
||||
out_list.append(image_out)
|
||||
|
||||
@ -208,10 +208,10 @@ def validate_middlebury(model, iters=32, split='H', mixed_prec=False, max_disp=1
|
||||
out_list = np.array(out_list)
|
||||
|
||||
epe = np.mean(epe_list)
|
||||
err2 = 100 * np.mean(out_list)
|
||||
d1 = 100 * np.mean(out_list)
|
||||
|
||||
print(f"Validation Middlebury{split}: EPE {epe}, Err2.0 {err2}")
|
||||
return {f'middlebury{split}-epe': epe, f'middlebury{split}-err2.0': err2}
|
||||
print(f"Validation Middlebury{split}: EPE {epe}, D1 {d1}")
|
||||
return {f'middlebury{split}-epe': epe, f'middlebury{split}-d1': d1}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -231,7 +231,6 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently")
|
||||
parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels")
|
||||
parser.add_argument('--max_disp', type=int, default=192, help="max disp of geometry encoding volume")
|
||||
parser.add_argument('--freeze_backbone_params', action="store_true", help="freeze backbone parameters")
|
||||
args = parser.parse_args()
|
||||
|
||||
model = torch.nn.DataParallel(IGEVStereo(args), device_ids=[0])
|
||||
@ -243,12 +242,6 @@ if __name__ == '__main__':
|
||||
assert args.restore_ckpt.endswith(".pth")
|
||||
logging.info("Loading checkpoint...")
|
||||
checkpoint = torch.load(args.restore_ckpt)
|
||||
|
||||
unwanted_prefix = '_orig_mod.'
|
||||
for k, v in list(checkpoint.items()):
|
||||
if k.startswith(unwanted_prefix):
|
||||
checkpoint[k[len(unwanted_prefix):]] = checkpoint.pop(k)
|
||||
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
logging.info(f"Done loading checkpoint")
|
||||
|
||||
@ -259,13 +252,13 @@ if __name__ == '__main__':
|
||||
use_mixed_precision = args.corr_implementation.endswith("_cuda")
|
||||
|
||||
if args.dataset == 'eth3d':
|
||||
validate_eth3d(model, iters=args.valid_iters, mixed_prec=use_mixed_precision, max_disp=args.max_disp)
|
||||
validate_eth3d(model, iters=args.valid_iters, mixed_prec=use_mixed_precision)
|
||||
|
||||
elif args.dataset == 'kitti':
|
||||
validate_kitti(model, iters=args.valid_iters, mixed_prec=use_mixed_precision, max_disp=args.max_disp)
|
||||
validate_kitti(model, iters=args.valid_iters, mixed_prec=use_mixed_precision)
|
||||
|
||||
elif args.dataset in [f"middlebury_{s}" for s in 'FHQ']:
|
||||
validate_middlebury(model, iters=args.valid_iters, split=args.dataset[-1], mixed_prec=use_mixed_precision, max_disp=args.max_disp)
|
||||
validate_middlebury(model, iters=args.valid_iters, split=args.dataset[-1], mixed_prec=use_mixed_precision)
|
||||
|
||||
elif args.dataset == 'sceneflow':
|
||||
validate_sceneflow(model, iters=args.valid_iters, mixed_prec=use_mixed_precision, max_disp=args.max_disp)
|
||||
validate_sceneflow(model, iters=args.valid_iters, mixed_prec=use_mixed_precision)
|
||||
|
@ -67,10 +67,9 @@ def sequence_loss(disp_preds, disp_init_pred, disp_gt, valid, loss_gamma=0.9, ma
|
||||
|
||||
metrics = {
|
||||
'epe': epe.mean().item(),
|
||||
'0.5px': (epe < 0.5).float().mean().item(),
|
||||
'1.0px': (epe < 1.0).float().mean().item(),
|
||||
'2.0px': (epe < 2.0).float().mean().item(),
|
||||
'4.0px': (epe < 4.0).float().mean().item(),
|
||||
'1px': (epe < 1).float().mean().item(),
|
||||
'3px': (epe < 3).float().mean().item(),
|
||||
'5px': (epe < 5).float().mean().item(),
|
||||
}
|
||||
|
||||
return disp_loss, metrics
|
||||
@ -78,7 +77,7 @@ def sequence_loss(disp_preds, disp_init_pred, disp_gt, valid, loss_gamma=0.9, ma
|
||||
|
||||
def fetch_optimizer(args, model):
|
||||
""" Create the optimizer and learning rate scheduler """
|
||||
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
|
||||
|
||||
# todo: cosine scheduler, warm-up
|
||||
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
|
||||
@ -187,7 +186,7 @@ def train(args):
|
||||
save_path = Path(ckpt_path + '/%d_%s.pth' % (total_steps + 1, args.name))
|
||||
logging.info(f"Saving file {save_path.absolute()}")
|
||||
torch.save(model.state_dict(), save_path)
|
||||
results = validate_middlebury(model.module, iters=args.valid_iters, max_disp=args.max_disp)
|
||||
results = validate_middlebury(model.module, iters=args.valid_iters)
|
||||
logger.write_dict(results)
|
||||
model.train()
|
||||
model.module.freeze_bn()
|
||||
@ -222,7 +221,6 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--train_datasets', nargs='+', default=['sceneflow'], help="training datasets.")
|
||||
parser.add_argument('--lr', type=float, default=0.0002, help="max learning rate.")
|
||||
parser.add_argument('--num_steps', type=int, default=200000, help="length of training schedule.")
|
||||
parser.add_argument('--freeze_backbone_params', action="store_true", help="freeze backbone parameters")
|
||||
parser.add_argument('--image_size', type=int, nargs='+', default=[320, 736], help="size of the random image crops used during training.")
|
||||
parser.add_argument('--train_iters', type=int, default=22, help="number of updates to the disparity field in each forward pass.")
|
||||
parser.add_argument('--wdecay', type=float, default=.00001, help="Weight decay in optimizer.")
|
||||
@ -242,8 +240,8 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--max_disp', type=int, default=192, help="max disp of geometry encoding volume")
|
||||
|
||||
# Data augmentation
|
||||
# parser.add_argument('--img_gamma', type=float, nargs='+', default=None, help="gamma range")
|
||||
# parser.add_argument('--saturation_range', type=float, nargs='+', default=[0, 1.4], help='color saturation')
|
||||
parser.add_argument('--img_gamma', type=float, nargs='+', default=None, help="gamma range")
|
||||
parser.add_argument('--saturation_range', type=float, nargs='+', default=[0, 1.4], help='color saturation')
|
||||
parser.add_argument('--do_flip', default=False, choices=['h', 'v'], help='flip the images horizontally or vertically')
|
||||
parser.add_argument('--spatial_scale', type=float, nargs='+', default=[-0.2, 0.4], help='re-scale the images randomly')
|
||||
parser.add_argument('--noyjitter', action='store_true', help='don\'t simulate imperfect rectification')
|
||||
|
Loading…
Reference in New Issue
Block a user