IGEV/README.md

108 lines
2.8 KiB
Markdown
Raw Normal View History

2022-10-17 00:06:39 +08:00
# IGEV-Stereo & IGEV-MVS
2023-03-13 14:41:09 +08:00
The IGEV-MVS is coming soon.
2023-03-12 20:28:25 +08:00
This repository contains the source code for our paper:
2022-08-06 15:50:37 +08:00
2023-03-14 09:05:14 +08:00
[Iterative Geometry Encoding Volume for Stereo Matching](https://arxiv.org/pdf/2303.06615.pdf)<br/>
2023-03-12 20:28:25 +08:00
CVPR 2023 <br/>
Gangwei Xu, Xianqi Wang, Xiaohuan Ding, Xin Yang<br/>
2022-08-06 15:50:37 +08:00
2023-03-12 20:37:24 +08:00
<img src="IGEV-Stereo/IGEV-Stereo.png">
2023-03-12 22:10:49 +08:00
## Demos
Pretrained models can be downloaded from [google drive](https://drive.google.com/drive/folders/1SsMHRyN7808jDViMN1sKz1Nx-71JxUuz?usp=share_link)
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run
```
python demo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth
```
2023-03-12 22:12:06 +08:00
<img src="IGEV-Stereo/demo-imgs.png" width="90%">
2023-03-12 22:10:49 +08:00
2022-08-06 15:50:37 +08:00
## Environment
2023-03-12 20:28:25 +08:00
* NVIDIA RTX 3090
2022-08-06 15:50:37 +08:00
* Python 3.8
* Pytorch 1.12
### Create a virtual environment and activate it.
```
2022-09-27 14:45:53 +08:00
conda create -n IGEV_Stereo python=3.8
conda activate IGEV_Stereo
2022-08-06 15:50:37 +08:00
```
### Dependencies
```
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
pip install opencv-python
pip install scikit-image
pip install tensorboard
pip install matplotlib
pip install tqdm
pip install timm==0.5.4
```
2023-03-12 20:49:36 +08:00
2023-03-12 21:17:44 +08:00
## Required Data
To evaluate/train IGEV-Stereo, you will need to download the required datasets.
2023-03-12 21:19:36 +08:00
* [Scene Flow](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
2023-03-12 21:17:44 +08:00
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo)
* [Middlebury](https://vision.middlebury.edu/stereo/data/)
* [ETH3D](https://www.eth3d.net/datasets#low-res-two-view-test-data)
By default `stereo_datasets.py` will search for the datasets in these locations.
```
├── /data
├── sceneflow
├── frames_finalpass
├── disparity
├── KITTI
├── KITTI_2012
├── training
├── testing
├── vkitti
├── KITTI_2015
├── training
├── testing
├── vkitti
├── Middlebury
├── trainingH
├── trainingH_GT
├── ETH3D
├── two_view_training
├── two_view_training_gt
```
## Evaluation
To evaluate a trained model on a test set (e.g. Scene Flow), run
```Shell
python evaluate_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset sceneflow
```
## Training
To train on Scene Flow, run
```Shell
python train_stereo.py
```
To train on KITTI, run
```Shell
python train_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset kitti
```
## Submission
For submission to the KITTI benchmark, run
```Shell
python save_disp.py
```
# Acknowledgements
This project is heavily based on [RAFT-Stereo](https://github.com/princeton-vl/RAFT-Stereo), We thank the original authors for their excellent work.