97 lines
3.1 KiB
Python
97 lines
3.1 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
from scipy import interpolate
|
||
|
|
||
|
|
||
|
class InputPadder:
|
||
|
""" Pads images such that dimensions are divisible by 8 """
|
||
|
def __init__(self, dims, mode='sintel', divis_by=8):
|
||
|
self.ht, self.wd = dims[-2:]
|
||
|
pad_ht = (((self.ht // divis_by) + 1) * divis_by - self.ht) % divis_by
|
||
|
pad_wd = (((self.wd // divis_by) + 1) * divis_by - self.wd) % divis_by
|
||
|
if mode == 'sintel':
|
||
|
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
|
||
|
else:
|
||
|
self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht]
|
||
|
|
||
|
def pad(self, *inputs):
|
||
|
assert all((x.ndim == 4) for x in inputs)
|
||
|
return [F.pad(x, self._pad, mode='replicate') for x in inputs]
|
||
|
|
||
|
def unpad(self, x):
|
||
|
assert x.ndim == 4
|
||
|
ht, wd = x.shape[-2:]
|
||
|
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
|
||
|
return x[..., c[0]:c[1], c[2]:c[3]]
|
||
|
|
||
|
def forward_interpolate(flow):
|
||
|
flow = flow.detach().cpu().numpy()
|
||
|
dx, dy = flow[0], flow[1]
|
||
|
|
||
|
ht, wd = dx.shape
|
||
|
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
|
||
|
|
||
|
x1 = x0 + dx
|
||
|
y1 = y0 + dy
|
||
|
|
||
|
x1 = x1.reshape(-1)
|
||
|
y1 = y1.reshape(-1)
|
||
|
dx = dx.reshape(-1)
|
||
|
dy = dy.reshape(-1)
|
||
|
|
||
|
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
|
||
|
x1 = x1[valid]
|
||
|
y1 = y1[valid]
|
||
|
dx = dx[valid]
|
||
|
dy = dy[valid]
|
||
|
|
||
|
flow_x = interpolate.griddata(
|
||
|
(x1, y1), dx, (x0, y0), method='nearest', fill_value=0)
|
||
|
|
||
|
flow_y = interpolate.griddata(
|
||
|
(x1, y1), dy, (x0, y0), method='nearest', fill_value=0)
|
||
|
|
||
|
flow = np.stack([flow_x, flow_y], axis=0)
|
||
|
return torch.from_numpy(flow).float()
|
||
|
|
||
|
|
||
|
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
|
||
|
""" Wrapper for grid_sample, uses pixel coordinates """
|
||
|
H, W = img.shape[-2:]
|
||
|
|
||
|
# print("$$$55555", img.shape, coords.shape)
|
||
|
xgrid, ygrid = coords.split([1,1], dim=-1)
|
||
|
xgrid = 2*xgrid/(W-1) - 1
|
||
|
|
||
|
# print("######88888", xgrid)
|
||
|
assert torch.unique(ygrid).numel() == 1 and H == 1 # This is a stereo problem
|
||
|
|
||
|
grid = torch.cat([xgrid, ygrid], dim=-1)
|
||
|
# print("###37777", grid.shape)
|
||
|
img = F.grid_sample(img, grid, align_corners=True)
|
||
|
if mask:
|
||
|
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
||
|
return img, mask.float()
|
||
|
|
||
|
return img
|
||
|
|
||
|
|
||
|
def coords_grid(batch, ht, wd):
|
||
|
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
||
|
coords = torch.stack(coords[::-1], dim=0).float()
|
||
|
return coords[None].repeat(batch, 1, 1, 1)
|
||
|
|
||
|
|
||
|
def upflow8(flow, mode='bilinear'):
|
||
|
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
||
|
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
||
|
|
||
|
def gauss_blur(input, N=5, std=1):
|
||
|
B, D, H, W = input.shape
|
||
|
x, y = torch.meshgrid(torch.arange(N).float() - N//2, torch.arange(N).float() - N//2)
|
||
|
unnormalized_gaussian = torch.exp(-(x.pow(2) + y.pow(2)) / (2 * std ** 2))
|
||
|
weights = unnormalized_gaussian / unnormalized_gaussian.sum().clamp(min=1e-4)
|
||
|
weights = weights.view(1,1,N,N).to(input)
|
||
|
output = F.conv2d(input.reshape(B*D,1,H,W), weights, padding=N//2)
|
||
|
return output.view(B, D, H, W)
|