IGEV/IGEV-MVS/core/update.py

94 lines
3.6 KiB
Python
Raw Normal View History

2023-03-20 19:52:04 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodule import *
class BasicMotionEncoder(nn.Module):
def __init__(self):
super(BasicMotionEncoder, self).__init__()
self.corr_levels = 2
self.corr_radius = 4
cor_planes = 2 * self.corr_levels * (2*self.corr_radius + 1)
self.convc1 = nn.Conv2d(cor_planes, 64, 1, padding=0)
self.convc2 = nn.Conv2d(64, 64, 3, padding=1)
self.convd1 = nn.Conv2d(1, 64, 7, padding=3)
self.convd2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv = nn.Conv2d(64+64, 128-1, 3, padding=1)
def forward(self, disp, corr):
cor = F.relu(self.convc1(corr))
cor = F.relu(self.convc2(cor))
disp_ = F.relu(self.convd1(disp))
disp_ = F.relu(self.convd2(disp_))
cor_disp = torch.cat([cor, disp_], dim=1)
out = F.relu(self.conv(cor_disp))
return torch.cat([out, disp], dim=1)
class ConvGRU(nn.Module):
def __init__(self, hidden_dim, input_dim, kernel_size=3):
super(ConvGRU, self).__init__()
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2)
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2)
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2)
def forward(self, h, *x_list):
x = torch.cat(x_list, dim=1)
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz(hx))
r = torch.sigmoid(self.convr(hx))
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
return h
class DispHead(nn.Module):
def __init__(self, input_dim=128, hidden_dim=256, output_dim=1):
super(DispHead, self).__init__()
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
self.conv2 = nn.Conv2d(hidden_dim, output_dim, 3, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.conv2(self.relu(self.conv1(x)))
class BasicMultiUpdateBlock(nn.Module):
def __init__(self, hidden_dims=[]):
super().__init__()
self.n_gru_layers = 3
self.n_downsample = 2
self.encoder = BasicMotionEncoder()
encoder_output_dim = 128
self.gru04 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (self.n_gru_layers > 1))
self.gru08 = ConvGRU(hidden_dims[1], hidden_dims[0] * (self.n_gru_layers == 3) + hidden_dims[2])
self.gru16 = ConvGRU(hidden_dims[0], hidden_dims[1])
self.disp_head = DispHead(hidden_dims[2], hidden_dim=256, output_dim=1)
factor = 2**self.n_downsample
self.mask_feat_4 = nn.Sequential(
nn.Conv2d(hidden_dims[2], 32, 3, padding=1),
nn.ReLU(inplace=True))
def forward(self, net, corr=None, disp=None, iter04=True, iter08=True, iter16=True, update=True):
if iter16:
net[2] = self.gru16(net[2], pool2x(net[1]))
if iter08:
if self.n_gru_layers > 2:
net[1] = self.gru08(net[1], pool2x(net[0]), interp(net[2], net[1]))
else:
net[1] = self.gru08(net[1], pool2x(net[0]))
if iter04:
motion_features = self.encoder(disp, corr)
if self.n_gru_layers > 1:
net[0] = self.gru04(net[0], motion_features, interp(net[1], net[0]))
else:
net[0] = self.gru04(net[0], motion_features)
if not update:
return net
delta_disp = self.disp_head(net[0])
mask_feat_4 = self.mask_feat_4(net[0])
return net, mask_feat_4, delta_disp