IGEV/IGEV-MVS/datasets/dtu_yao.py

237 lines
8.7 KiB
Python
Raw Permalink Normal View History

2023-03-20 19:52:04 +08:00
from torch.utils.data import Dataset
import numpy as np
import os
from PIL import Image
from datasets.data_io import *
import cv2
import random
from torchvision import transforms
class MVSDataset(Dataset):
def __init__(self, datapath, listfile, mode, nviews, robust_train = False):
super(MVSDataset, self).__init__()
self.levels = 4
self.datapath = datapath
self.listfile = listfile
self.mode = mode
self.nviews = nviews
self.img_wh = (640, 512)
# self.img_wh = (1440, 1056)
self.robust_train = robust_train
assert self.mode in ["train", "val", "test"]
self.metas = self.build_list()
self.color_augment = transforms.ColorJitter(brightness=0.5, contrast=0.5)
def build_list(self):
metas = []
with open(self.listfile) as f:
scans = f.readlines()
scans = [line.rstrip() for line in scans]
for scan in scans:
pair_file = "Cameras_1/pair.txt"
with open(os.path.join(self.datapath, pair_file)) as f:
self.num_viewpoint = int(f.readline())
# viewpoints (49)
for view_idx in range(self.num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
# light conditions 0-6
for light_idx in range(7):
metas.append((scan, light_idx, ref_view, src_views))
print("dataset", self.mode, "metas:", len(metas))
return metas
def __len__(self):
return len(self.metas)
def read_cam_file(self, filename):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
depth_min = float(lines[11].split()[0])
depth_max = float(lines[11].split()[-1])
return intrinsics, extrinsics, depth_min, depth_max
def read_img(self, filename):
img = Image.open(filename)
if self.mode=='train':
img = self.color_augment(img)
# scale 0~255 to -1~1
np_img = 2*np.array(img, dtype=np.float32) / 255. - 1
h, w, _ = np_img.shape
np_img_ms = {
"level_3": cv2.resize(np_img, (w//8, h//8), interpolation=cv2.INTER_LINEAR),
"level_2": cv2.resize(np_img, (w//4, h//4), interpolation=cv2.INTER_LINEAR),
"level_1": cv2.resize(np_img, (w//2, h//2), interpolation=cv2.INTER_LINEAR),
"level_0": np_img
}
return np_img_ms
def prepare_img(self, hr_img):
#downsample
h, w = hr_img.shape
# original w,h: 1600, 1200; downsample -> 800, 600 ; crop -> 640, 512
hr_img = cv2.resize(hr_img, (w//2, h//2), interpolation=cv2.INTER_NEAREST)
#crop
h, w = hr_img.shape
target_h, target_w = self.img_wh[1], self.img_wh[0]
start_h, start_w = (h - target_h)//2, (w - target_w)//2
hr_img_crop = hr_img[start_h: start_h + target_h, start_w: start_w + target_w]
return hr_img_crop
def read_mask(self, filename):
img = Image.open(filename)
np_img = np.array(img, dtype=np.float32)
np_img = (np_img > 10).astype(np.float32)
return np_img
def read_depth_mask(self, filename, mask_filename, scale):
depth_hr = np.array(read_pfm(filename)[0], dtype=np.float32) * scale
depth_hr = np.squeeze(depth_hr,2)
depth_lr = self.prepare_img(depth_hr)
mask = self.read_mask(mask_filename)
mask = self.prepare_img(mask)
mask = mask.astype(np.bool_)
mask = mask.astype(np.float32)
h, w = depth_lr.shape
depth_lr_ms = {}
mask_ms = {}
for i in range(self.levels):
depth_cur = cv2.resize(depth_lr, (w//(2**i), h//(2**i)), interpolation=cv2.INTER_NEAREST)
mask_cur = cv2.resize(mask, (w//(2**i), h//(2**i)), interpolation=cv2.INTER_NEAREST)
depth_lr_ms[f"level_{i}"] = depth_cur
mask_ms[f"level_{i}"] = mask_cur
return depth_lr_ms, mask_ms
def __getitem__(self, idx):
meta = self.metas[idx]
scan, light_idx, ref_view, src_views = meta
# robust training strategy
if self.robust_train:
num_src_views = len(src_views)
index = random.sample(range(num_src_views), self.nviews - 1)
view_ids = [ref_view] + [src_views[i] for i in index]
scale = random.uniform(0.8, 1.25)
else:
view_ids = [ref_view] + src_views[:self.nviews - 1]
scale = 1
imgs_0 = []
imgs_1 = []
imgs_2 = []
imgs_3 = []
mask = None
depth = None
depth_min = None
depth_max = None
proj_matrices_0 = []
proj_matrices_1 = []
proj_matrices_2 = []
proj_matrices_3 = []
for i, vid in enumerate(view_ids):
img_filename = os.path.join(self.datapath,
'Rectified/{}_train/rect_{:0>3}_{}_r5000.png'.format(scan, vid + 1, light_idx))
proj_mat_filename = os.path.join(self.datapath, 'Cameras_1/{}_train/{:0>8}_cam.txt').format(scan, vid)
mask_filename = os.path.join(self.datapath, 'Depths_raw/{}/depth_visual_{:0>4}.png'.format(scan, vid))
depth_filename = os.path.join(self.datapath, 'Depths_raw/{}/depth_map_{:0>4}.pfm'.format(scan, vid))
imgs = self.read_img(img_filename)
imgs_0.append(imgs['level_0'])
imgs_1.append(imgs['level_1'])
imgs_2.append(imgs['level_2'])
imgs_3.append(imgs['level_3'])
intrinsics, extrinsics, depth_min_, depth_max_ = self.read_cam_file(proj_mat_filename)
extrinsics[:3,3] *= scale
intrinsics[0] *= 4
intrinsics[1] *= 4
proj_mat = extrinsics.copy()
intrinsics[:2,:] *= 0.125
proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
proj_matrices_3.append(proj_mat)
proj_mat = extrinsics.copy()
intrinsics[:2,:] *= 2
proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
proj_matrices_2.append(proj_mat)
proj_mat = extrinsics.copy()
intrinsics[:2,:] *= 2
proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
proj_matrices_1.append(proj_mat)
proj_mat = extrinsics.copy()
intrinsics[:2,:] *= 2
proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4])
proj_matrices_0.append(proj_mat)
if i == 0: # reference view
depth_min = depth_min_ * scale
depth_max = depth_max_ * scale
depth, mask = self.read_depth_mask(depth_filename, mask_filename, scale)
for l in range(self.levels):
mask[f'level_{l}'] = np.expand_dims(mask[f'level_{l}'],2)
mask[f'level_{l}'] = mask[f'level_{l}'].transpose([2,0,1])
depth[f'level_{l}'] = np.expand_dims(depth[f'level_{l}'],2)
depth[f'level_{l}'] = depth[f'level_{l}'].transpose([2,0,1])
# imgs: N*3*H0*W0, N is number of images
imgs_0 = np.stack(imgs_0).transpose([0, 3, 1, 2])
imgs_1 = np.stack(imgs_1).transpose([0, 3, 1, 2])
imgs_2 = np.stack(imgs_2).transpose([0, 3, 1, 2])
imgs_3 = np.stack(imgs_3).transpose([0, 3, 1, 2])
imgs = {}
imgs['level_0'] = imgs_0
imgs['level_1'] = imgs_1
imgs['level_2'] = imgs_2
imgs['level_3'] = imgs_3
# proj_matrices: N*4*4
proj_matrices_0 = np.stack(proj_matrices_0)
proj_matrices_1 = np.stack(proj_matrices_1)
proj_matrices_2 = np.stack(proj_matrices_2)
proj_matrices_3 = np.stack(proj_matrices_3)
proj={}
proj['level_3']=proj_matrices_3
proj['level_2']=proj_matrices_2
proj['level_1']=proj_matrices_1
proj['level_0']=proj_matrices_0
# data is numpy array
return {"imgs": imgs, # [N, 3, H, W]
"proj_matrices": proj, # [N,4,4]
"depth": depth, # [1, H, W]
"depth_min": depth_min, # scalar
"depth_max": depth_max, # scalar
"mask": mask} # [1, H, W]