IGEV/IGEV-Stereo/core/utils/frame_utils.py

187 lines
5.8 KiB
Python
Raw Permalink Normal View History

2023-03-12 20:19:58 +08:00
import numpy as np
from PIL import Image
from os.path import *
import re
import json
import imageio
import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
TAG_CHAR = np.array([202021.25], np.float32)
def readFlow(fn):
""" Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
# print 'fn = %s'%(fn)
with open(fn, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
return None
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
# print 'Reading %d x %d flo file\n' % (w, h)
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
# Reshape data into 3D array (columns, rows, bands)
# The reshape here is for visualization, the original code is (w,h,2)
return np.resize(data, (int(h), int(w), 2))
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
def writePFM(file, array):
import os
assert type(file) is str and type(array) is np.ndarray and \
os.path.splitext(file)[1] == ".pfm"
with open(file, 'wb') as f:
H, W = array.shape
headers = ["Pf\n", f"{W} {H}\n", "-1\n"]
for header in headers:
f.write(str.encode(header))
array = np.flip(array, axis=0).astype(np.float32)
f.write(array.tobytes())
def writeFlow(filename,uv,v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def readFlowKITTI(filename):
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
flow = flow[:,:,::-1].astype(np.float32)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2**15) / 64.0
return flow, valid
def readDispKITTI(filename):
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
valid = disp > 0.0
return disp, valid
# Method taken from /n/fs/raft-depth/RAFT-Stereo/datasets/SintelStereo/sdk/python/sintel_io.py
def readDispSintelStereo(file_name):
a = np.array(Image.open(file_name))
d_r, d_g, d_b = np.split(a, axis=2, indices_or_sections=3)
disp = (d_r * 4 + d_g / (2**6) + d_b / (2**14))[..., 0]
mask = np.array(Image.open(file_name.replace('disparities', 'occlusions')))
valid = ((mask == 0) & (disp > 0))
return disp, valid
# Method taken from https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
def readDispFallingThings(file_name):
a = np.array(Image.open(file_name))
with open('/'.join(file_name.split('/')[:-1] + ['_camera_settings.json']), 'r') as f:
intrinsics = json.load(f)
fx = intrinsics['camera_settings'][0]['intrinsic_settings']['fx']
disp = (fx * 6.0 * 100) / a.astype(np.float32)
valid = disp > 0
return disp, valid
# Method taken from https://github.com/castacks/tartanair_tools/blob/master/data_type.md
def readDispTartanAir(file_name):
depth = np.load(file_name)
disp = 80.0 / depth
valid = disp > 0
return disp, valid
def readDispMiddlebury(file_name):
assert basename(file_name) == 'disp0GT.pfm'
disp = readPFM(file_name).astype(np.float32)
assert len(disp.shape) == 2
nocc_pix = file_name.replace('disp0GT.pfm', 'mask0nocc.png')
assert exists(nocc_pix)
nocc_pix = imageio.imread(nocc_pix) == 255
assert np.any(nocc_pix)
return disp, nocc_pix
def writeFlowKITTI(filename, uv):
uv = 64.0 * uv + 2**15
valid = np.ones([uv.shape[0], uv.shape[1], 1])
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
cv2.imwrite(filename, uv[..., ::-1])
def read_gen(file_name, pil=False):
ext = splitext(file_name)[-1]
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
return Image.open(file_name)
elif ext == '.bin' or ext == '.raw':
return np.load(file_name)
elif ext == '.flo':
return readFlow(file_name).astype(np.float32)
elif ext == '.pfm':
flow = readPFM(file_name).astype(np.float32)
if len(flow.shape) == 2:
return flow
else:
return flow[:, :, :-1]
return []