from __future__ import print_function, division import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data from torch.autograd import Variable import torchvision.utils as vutils import torch.nn.functional as F import numpy as np import time from datasets import * from models import * import copy import yaml import sys import argparse def make_iterative_func(func): def wrapper(vars): if isinstance(vars, list): return [wrapper(x) for x in vars] elif isinstance(vars, tuple): return tuple([wrapper(x) for x in vars]) elif isinstance(vars, dict): return {k: wrapper(v) for k, v in vars.items()} else: return func(vars) return wrapper def make_nograd_func(func): def wrapper(*f_args, **f_kwargs): with torch.no_grad(): ret = func(*f_args, **f_kwargs) return ret return wrapper @make_iterative_func def tensor2float(vars): if isinstance(vars, float): return vars elif isinstance(vars, torch.Tensor): return vars.data.item() else: raise NotImplementedError("invalid input type for tensor2float") @make_iterative_func def tensor2numpy(vars): if isinstance(vars, np.ndarray): return vars elif isinstance(vars, torch.Tensor): return vars.data.cpu().numpy() else: raise NotImplementedError("invalid input type for tensor2numpy") @make_iterative_func def check_allfloat(vars): assert isinstance(vars, float) def save_scalars(logger, mode_tag, scalar_dict, global_step): scalar_dict = tensor2float(scalar_dict) for tag, values in scalar_dict.items(): if not isinstance(values, list) and not isinstance(values, tuple): values = [values] for idx, value in enumerate(values): scalar_name = '{}/{}'.format(mode_tag, tag) # if len(values) > 1: scalar_name = scalar_name + "_" + str(idx) logger.add_scalar(scalar_name, value, global_step) def save_images(logger, mode_tag, images_dict, global_step): images_dict = tensor2numpy(images_dict) for tag, values in images_dict.items(): if not isinstance(values, list) and not isinstance(values, tuple): values = [values] for idx, value in enumerate(values): if len(value.shape) == 3: value = value[:, np.newaxis, :, :] value = value[:1] value = torch.from_numpy(value) image_name = '{}/{}'.format(mode_tag, tag) if len(values) > 1: image_name = image_name + "_" + str(idx) logger.add_image(image_name, vutils.make_grid(value, padding=0, nrow=1, normalize=True, scale_each=True), global_step) def adjust_learning_rate(optimizer, epoch, base_lr, lrepochs): splits = lrepochs.split(':') assert len(splits) == 2 # parse the epochs to downscale the learning rate (before :) downscale_epochs = [int(eid_str) for eid_str in splits[0].split(',')] # parse downscale rate (after :) downscale_rate = float(splits[1]) print("downscale epochs: {}, downscale rate: {}".format(downscale_epochs, downscale_rate)) lr = base_lr for eid in downscale_epochs: if epoch >= eid: lr /= downscale_rate else: break print("setting learning rate to {}".format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr class AverageMeter(object): def __init__(self): self.sum_value = 0. self.count = 0 def update(self, x): check_allfloat(x) self.sum_value += x self.count += 1 def mean(self): return self.sum_value / self.count class AverageMeterDict(object): def __init__(self): self.data = None self.count = 0 def update(self, x): check_allfloat(x) self.count += 1 if self.data is None: self.data = copy.deepcopy(x) else: for k1, v1 in x.items(): if isinstance(v1, float): self.data[k1] += v1 elif isinstance(v1, tuple) or isinstance(v1, list): for idx, v2 in enumerate(v1): self.data[k1][idx] += v2 else: assert NotImplementedError("error input type for update AvgMeterDict") def mean(self): @make_iterative_func def get_mean(v): return v / float(self.count) return get_mean(self.data)