import numpy as np import re import torchvision.transforms as transforms def get_transform(): mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] return transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) # read all lines in a file def read_all_lines(filename): with open(filename) as f: lines = [line.rstrip() for line in f.readlines()] return lines # read an .pfm file into numpy array, used to load SceneFlow disparity files def pfm_imread(filename): file = open(filename, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().decode('utf-8').rstrip() if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8')) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale