import os import random from torch.utils.data import Dataset from PIL import Image import numpy as np from datasets.data_io import get_transform, read_all_lines, pfm_imread class SceneFlowDatset(Dataset): def __init__(self, datapath, list_filename, training): self.datapath = datapath self.left_filenames, self.right_filenames, self.disp_filenames = self.load_path(list_filename) self.training = training def load_path(self, list_filename): lines = read_all_lines(list_filename) splits = [line.split() for line in lines] left_images = [x[0] for x in splits] right_images = [x[1] for x in splits] disp_images = [x[2] for x in splits] return left_images, right_images, disp_images def load_image(self, filename): return Image.open(filename).convert('RGB') def load_disp(self, filename): data, scale = pfm_imread(filename) data = np.ascontiguousarray(data, dtype=np.float32) return data def __len__(self): return len(self.left_filenames) def __getitem__(self, index): left_img = self.load_image(os.path.join(self.datapath, self.left_filenames[index])) right_img = self.load_image(os.path.join(self.datapath, self.right_filenames[index])) disparity = self.load_disp(os.path.join(self.datapath, self.disp_filenames[index])) if self.training: w, h = left_img.size crop_w, crop_h = 512, 256 x1 = random.randint(0, w - crop_w) y1 = random.randint(0, h - crop_h) # random crop left_img = left_img.crop((x1, y1, x1 + crop_w, y1 + crop_h)) right_img = right_img.crop((x1, y1, x1 + crop_w, y1 + crop_h)) disparity = disparity[y1:y1 + crop_h, x1:x1 + crop_w] # to tensor, normalize processed = get_transform() left_img = processed(left_img) right_img = processed(right_img) return {"left": left_img, "right": right_img, "disparity": disparity} else: w, h = left_img.size crop_w, crop_h = 960, 512 left_img = left_img.crop((w - crop_w, h - crop_h, w, h)) right_img = right_img.crop((w - crop_w, h - crop_h, w, h)) disparity = disparity[h - crop_h:h, w - crop_w: w] processed = get_transform() left_img = processed(left_img) right_img = processed(right_img) return {"left": left_img, "right": right_img, "disparity": disparity, "top_pad": 0, "right_pad": 0}