59 lines
1.4 KiB
Python
59 lines
1.4 KiB
Python
|
import numpy as np
|
||
|
import re
|
||
|
import torchvision.transforms as transforms
|
||
|
|
||
|
|
||
|
def get_transform():
|
||
|
mean = [0.485, 0.456, 0.406]
|
||
|
std = [0.229, 0.224, 0.225]
|
||
|
|
||
|
return transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=mean, std=std),
|
||
|
])
|
||
|
|
||
|
|
||
|
# read all lines in a file
|
||
|
def read_all_lines(filename):
|
||
|
with open(filename) as f:
|
||
|
lines = [line.rstrip() for line in f.readlines()]
|
||
|
return lines
|
||
|
|
||
|
|
||
|
# read an .pfm file into numpy array, used to load SceneFlow disparity files
|
||
|
def pfm_imread(filename):
|
||
|
file = open(filename, 'rb')
|
||
|
color = None
|
||
|
width = None
|
||
|
height = None
|
||
|
scale = None
|
||
|
endian = None
|
||
|
|
||
|
header = file.readline().decode('utf-8').rstrip()
|
||
|
if header == 'PF':
|
||
|
color = True
|
||
|
elif header == 'Pf':
|
||
|
color = False
|
||
|
else:
|
||
|
raise Exception('Not a PFM file.')
|
||
|
|
||
|
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
|
||
|
if dim_match:
|
||
|
width, height = map(int, dim_match.groups())
|
||
|
else:
|
||
|
raise Exception('Malformed PFM header.')
|
||
|
|
||
|
scale = float(file.readline().rstrip())
|
||
|
if scale < 0: # little-endian
|
||
|
endian = '<'
|
||
|
scale = -scale
|
||
|
else:
|
||
|
endian = '>' # big-endian
|
||
|
|
||
|
data = np.fromfile(file, endian + 'f')
|
||
|
shape = (height, width, 3) if color else (height, width)
|
||
|
|
||
|
data = np.reshape(data, shape)
|
||
|
data = np.flipud(data)
|
||
|
return data, scale
|