GwcNet/datasets/kitti_dataset.py

100 lines
3.7 KiB
Python
Raw Normal View History

2019-04-14 17:34:58 +08:00
import os
import random
from torch.utils.data import Dataset
from PIL import Image
import numpy as np
from datasets.data_io import get_transform, read_all_lines
class KITTIDataset(Dataset):
def __init__(self, datapath, list_filename, training):
self.datapath = datapath
self.left_filenames, self.right_filenames, self.disp_filenames = self.load_path(list_filename)
self.training = training
if self.training:
assert self.disp_filenames is not None
def load_path(self, list_filename):
lines = read_all_lines(list_filename)
splits = [line.split() for line in lines]
left_images = [x[0] for x in splits]
right_images = [x[1] for x in splits]
if len(splits[0]) == 2: # ground truth not available
return left_images, right_images, None
else:
disp_images = [x[2] for x in splits]
return left_images, right_images, disp_images
def load_image(self, filename):
return Image.open(filename).convert('RGB')
def load_disp(self, filename):
data = Image.open(filename)
data = np.array(data, dtype=np.float32) / 256.
return data
def __len__(self):
return len(self.left_filenames)
def __getitem__(self, index):
left_img = self.load_image(os.path.join(self.datapath, self.left_filenames[index]))
right_img = self.load_image(os.path.join(self.datapath, self.right_filenames[index]))
if self.disp_filenames: # has disparity ground truth
disparity = self.load_disp(os.path.join(self.datapath, self.disp_filenames[index]))
else:
disparity = None
if self.training:
w, h = left_img.size
crop_w, crop_h = 512, 256
x1 = random.randint(0, w - crop_w)
y1 = random.randint(0, h - crop_h)
# random crop
left_img = left_img.crop((x1, y1, x1 + crop_w, y1 + crop_h))
right_img = right_img.crop((x1, y1, x1 + crop_w, y1 + crop_h))
disparity = disparity[y1:y1 + crop_h, x1:x1 + crop_w]
# to tensor, normalize
processed = get_transform()
left_img = processed(left_img)
right_img = processed(right_img)
return {"left": left_img,
"right": right_img,
"disparity": disparity}
else:
w, h = left_img.size
# normalize
processed = get_transform()
left_img = processed(left_img).numpy()
right_img = processed(right_img).numpy()
# pad to size 1248x384
top_pad = 384 - h
right_pad = 1248 - w
assert top_pad > 0 and right_pad > 0
# pad images
left_img = np.lib.pad(left_img, ((0, 0), (top_pad, 0), (0, right_pad)), mode='constant', constant_values=0)
right_img = np.lib.pad(right_img, ((0, 0), (top_pad, 0), (0, right_pad)), mode='constant',
constant_values=0)
# pad disparity gt
if disparity is not None:
assert len(disparity.shape) == 2
disparity = np.lib.pad(disparity, ((top_pad, 0), (0, right_pad)), mode='constant', constant_values=0)
if disparity is not None:
return {"left": left_img,
"right": right_img,
"disparity": disparity,
"top_pad": top_pad,
"right_pad": right_pad}
else:
return {"left": left_img,
"right": right_img,
"top_pad": top_pad,
"right_pad": right_pad}