GwcNet/README.md

45 lines
1.8 KiB
Markdown
Raw Normal View History

2019-04-17 17:57:51 +08:00
# GwcNet
2019-03-05 15:00:25 +08:00
This is the implementation of the paper **Group-wise Correlation Stereo Network**, CVPR 19, Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li
[\[Arxiv\]](https://arxiv.org/)
2019-04-15 23:12:41 +08:00
# How to use
2019-04-17 17:57:51 +08:00
## Environment
* python 3.6
* Pytorch >= 0.4.1
## Data Preparation
Download [Scene Flow Datasets](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html), [KITTI 2012](http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo), [KITTI 2015](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo)
2019-04-15 23:12:41 +08:00
## Training
**Scene Flow Datasets**
2019-04-17 17:57:51 +08:00
2019-04-15 23:12:41 +08:00
run the script `./scripts/sceneflow.sh` to train on Scene Flow datsets. Please update `DATAPATH` in the bash file as your training data path.
**KITTI 2012 / 2015**
run the script `./scripts/kitti12.sh` and `./scripts/kitti15.sh` to finetune on the KITTI 12/15 dataset. Please update `DATAPATH` and `--loadckpt` as your training data path and pretrained SceneFlow checkpoint file.
## Evaluation
2019-04-17 17:57:51 +08:00
run the script `./scripts/kitti12_save.sh` and `./scripts/kitti15_save.sh` to save png predictions on the test set of the KITTI datasets to the folder `./predictions`.
2019-04-15 23:12:41 +08:00
## Pretrained Models
[KITTI 2012/2015](https://drive.google.com/file/d/1fOw2W7CSEzvSKzBAEIIeftxw6CuvH9Hl/view?usp=sharing)
2019-03-05 15:00:25 +08:00
# Citation
If you find this code useful in your research, please cite:
```
@inproceedings{guo2019group,
title={Group-wise correlation stereo network},
author={Guo, Xiaoyang and Yang, Kai and Yang, Wukui and Wang, Xiaogang and Li, Hongsheng},
booktitle={CVPR},
year={2019}
}
```
2019-04-15 23:12:41 +08:00
# Acknowledgements
2019-04-17 17:57:51 +08:00
Thanks to Jia-Ren Chang for opening source of his excellent work PSMNet. Our work is inspired by this work and part of codes in `models` are migrated from [PSMNet](https://github.com/JiaRenChang/PSMNet).